
 

 

REPORT: VERSION 01 

DATE: MARCH 2021 

PREPARED BY: JORDAN R. FISCHBACH, DAVID R. JOHNSON, MICHAEL T. 

WILSON, NATHAN B. GELDNER, CHUCK STELZNER  
 

 

 

 

COASTAL PROTECTION AND  

RESTORATION AUTHORITY  

150 TERRACE AVENUE 

BATON ROUGE, LA 70802  

WWW.COASTAL.LA.GOV 

 

2023 COASTAL MASTER PLAN 

RISK ASSESSMENT 
MODEL IMPROVEMENT REPORT 



2023 COASTAL MASTER PLAN. Risk Assessment 2 

 

COASTAL PROTECTION AND 

RESTORATION AUTHORITY 

This document was developed in support of the 2023 Coastal Master Plan being prepared by the 

Coastal Protection and Restoration Authority (CPRA). CPRA was established by the Louisiana 

Legislature in response to Hurricanes Katrina and Rita through Act 8 of the First Extraordinary Session 

of 2005. Act 8 of the First Extraordinary Session of 2005 expanded the membership, duties, and 

responsibilities of CPRA and charged the new authority to develop and implement a comprehensive 

coastal protection plan, consisting of a master plan (revised every six years) and annual plans. CPRA’s 

mandate is to develop, implement, and enforce a comprehensive coastal protection and restoration 

master plan.  

 

 

 

 

 

 

CITATION 

Fischbach, J.R., Johnson, D.R., Wilson, M.T., Geldner, N.B., Stelzner, C. (2021). 2023 Coastal Master 

Plan: Model Improvement Report, Risk Assessment. Version I. (pp. 1-77). Baton Rouge, Louisiana: 

Coastal Protection and Restoration Authority. 



2023 COASTAL MASTER PLAN. Risk Assessment 3 

 

ACKNOWLEDGEMENTS 

This document was developed as part of a broader Model Improvement Plan in support of the 2023 

Coastal Master Plan under the guidance of the Modeling Decision Team (MDT):  

 Coastal Protection and Restoration Authority (CPRA) of Louisiana – Elizabeth Jarrell, 

Stuart Brown, Ashley Cobb, Catherine Fitzpatrick, Krista Jankowski, David Lindquist, 

Sam Martin, and Eric White 

 University of New Orleans – Denise Reed  

This document was prepared by the 2023 Coastal Master Plan Risk Assessment Team: 

 Jordan Fischbach – RAND Corporation 

 David Johnson – Purdue University 

 Michael Wilson – RAND Corporation 

 Nathan Geldner – Purdue University 

 Chuck Stelzner – RAND Corporation 

 

We are grateful for the constructive reviews of this document from our colleagues Lance Menthe 

(RAND) and Ed Link (Maryland). Colleagues from The Water Institute including Hugh Roberts, Scott 

Hemmerling, Brett McMann, and Zach Cobell contributed insights to this effort. We thank Mikaela 

Meyer (Carnegie Mellon University) for supporting structure inventory development and other model 

improvements as a RAND Summer Associate. David DeSmet (RAND) assisted with final document 

preparation. 

 

This effort was funded by the Coastal Protection and Restoration Authority (CPRA) of Louisiana under 

Cooperative Endeavor Agreement Number 2503-12-58, Task Order No. 03. 



2023 COASTAL MASTER PLAN. Risk Assessment 4 

 

EXECUTIVE SUMMARY 

The Coastal Louisiana Risk Assessment (CLARA) model was originally created by researchers at RAND 

Corporation to support development of Louisiana’s 2012 Coastal Master Plan. It is designed to 

estimate flood depth exceedances, direct economic damage exceedances, and expected annual 

damage in the Louisiana coastal zone. The model uses high-resolution hydrodynamic simulations of 

storm surge and waves as inputs. Monte Carlo simulation is used to estimate risk under a range of 

assumptions about future environmental and economic conditions and with different combinations of 

structural and nonstructural risk reduction projects on the landscape. 

This report describes a series of improvements made to the CLARA model in support of Louisiana’s 

2023 Coastal Master Plan, resulting in a third major version of CLARA (CLARA v3.0). The process of 

model improvement is similar to that conducted in support of the 2017 Coastal Master Plan. However, 

the model updates are more modest in scope than those implemented for the previous plan, reflecting 

a relatively stable approach for coastal flood risk and damage assessment and a relatively mature 

stage of model development. Key improvements described here were identified through an initial 

phase of investigation by the Risk Assessment Team, in consultation with CPRA and its Predictive 

Model Technical Advisory Committee (PM-TAC). 

Key changes described in this report include: 

 Updates to the CLARA model grid, unit of analysis, and mapping capabilities 

 Creation of a novel data set comprising the location and risk-relevant attributes for 

structures in the coastal zone 

 Implementation of advancements to joint probability modeling methodologies 

developed by the US Army Corps of Engineers 

 Selection of a new reduced storm set for use in flood risk estimation 

 Development of a new population growth scenario 

 Incorporation of uncertainty in population change and structural attributes into the 

model’s parametric uncertainty framework 

 Addition of risk metrics that summarize expected direct economic losses over time 

 More realistic fragility modeling that accounts for the possibility of levee failures to 

occur during surge runup 

 

Some aspects of model improvements are still ongoing and expected to continue through initial 

testing of the 2023 Coastal Master Plan’s existing conditions landscape. This report will be revised 

and upated to reflect the final changes used in model production. 
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1.0 INTRODUCTION 

1.1 THE CLARA MODEL 

The Coastal Louisiana Risk Assessment (CLARA) model was originally created by researchers at RAND 

Corporation to support development of Louisiana’s 2012 Coastal Master Plan. It is designed to 

estimate flood depth exceedances, direct economic damage exceedances, and expected annual 

damage in the Louisiana coastal zone. The model uses high-resolution hydrodynamic simulations of 

storm surge and waves as inputs. Monte Carlo simulation is used to estimate risk under a range of 

assumptions about future environmental and economic conditions and with different combinations of 

structural and nonstructural risk reduction projects on the landscape. 

The CLARA model is already well described in prior peer-reviewed and published literature, so this 

report does not include detailed descriptions of the basic methodological approach and assumptions. 

For interested readers, an introduction to the model can be found in Fischbach et al. (2012) and 

Johnson et al. (2013). Model improvements for the 2017 Coastal Master Plan are described in 

Fischbach et al. (2017), and published examples of CLARA model results can be found in Fischbach et 

al. (2019), Meyer and Johnson (2019), and Fischbach et al. (2017b). An updated, standalone 

summary of the CLARA model methodology to serve as an introduction and overview of the model is 

expected for publication in 2021 and will be updated for final publication with the 2023 Coastal 

Master Plan.   

1.2 PURPOSE OF THIS REPORT 

This report describes a series of improvements made to the CLARA model in support of Louisiana’s 

2023 Coastal Master Plan, resulting in a third major version of CLARA (CLARA v3.0). The process of 

model improvement is similar to that conducted in support of the 2017 Coastal Master Plan 

(Fischbach et al., 2017). However, the model updates are more modest in scope than those 

implemented for the previous plan, reflecting a relatively stable approach for coastal flood risk and 

damage assessment and a relatively mature stage of model development. Key improvements 

described here were identified through an initial phase of investigation by the Risk Assessment Team, 

in consultation with CPRA and its Predictive Model Technical Advisory Committee (PM-TAC). 

This report should be of interest to CPRA and technical professionals and researchers in the field of 

flood risk assessment. This report version reflects data upgrades and model improvements made as 

of December 2020. Given current progress on model simulation, further updates will be needed in 
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order to fully document model changes related to future scenario evaluation and nonstructural project 

assessment. As a result, at least one update to this report is anticipated in early- to mid-2021 once 

these approaches are finalized. 

1.3 OVERVIEW OF MODEL IMPROVEMENT ACTIVITIES 

For the 2023 Coastal Master Plan, key improvements and changes include (1) updates to CLARA’s 

geospatial domain and grid, with the goal of correcting minor issues identified during the 2017 

Coastal Master Plan analysis; (2) updates to the statistical methodology for estimating flood likelihood, 

including a new experimental design of simulated storms; (3) updated methods for considering future 

population and asset growth; (4) a broader range of damage outputs; and (5) other minor 

improvements to the model’s handling of system fragility and risk estimates in time periods not run 

through ADCIRC+SWAN.  

Of particular note in this update is a new inventory of assets in the coastal zone derived from newly 

available parcel- and structure-level datasets, with specific structure locations, first-floor elevation 

estimates, and other key details now included for each structure. CLARA v3.0 uses structures as the 

unit of analysis for damage calculations, although risk estimates are still aggregated to larger spatial 

units for communication purposes. This report describes in detail the methods for both building this 

new structure-level dataset and incorporating it into the CLARA damage model, respectively. 

1.4 ORGANIZATION OF THIS REPORT 

This report is organized into seven chapters. Chapter 2 describes updates to CLARA’s geospatial grid, 

the unit of resolution used to estimate flood depth for each location across the coast. The new 

structure-level dataset and implementation in the CLARA damage model is described in Chapter 3. 

Chapter 4 documents revised statistical methods for estimating flood depths and the process for 

selecting a new set of simulated storms for the quantitative experiments. Chapter 5 focuses on new 

population growth projections for future damage analysis, while Chapter 6 provides an overview of the 

revised damage metrics. The report concludes with a brief summary of key advances in Chapter 7. 
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2.0 GEOSPATIAL UPDATES 

2.1 UPDATES TO THE CLARA MODEL DOMAIN AND GRID 

Previous versions of the CLARA model have utilized a study domain designed to encompass the 

estimated 2,000-year floodplain 50 years in the future. In 2017, the domain also included 

Mississippi’s three coastal counties, for the purpose of evaluating potential impacts of a Lake 

Pontchartrain barrier; it also included a portion of coastal Texas, but due to a lack of quality 

topographic elevation and economic asset data, points in Texas were ultimately excluded from the 

2017 analysis.  

The model grid in 2017 consisted of grid points paired to polygons. The spatial unit of analysis was 

based on a regularly-spaced 1 km grid,1 with additional points placed in areas with relatively high 

population density, such that every 2010 US Census block would contain at least one CLARA grid 

point. In smaller blocks, the grid point was placed at the block’s centroid (instead located at a 

representative central location if the centroid lay outside the block boundary). In larger blocks, grid 

points defaulted to the regularly spaced grid. 

Mapped visuals were generated using grid cell polygons formed by Thiessen polygons enclosing each 

of the grid points, such that a given point’s polygon consisted of all spatial locations closer to that grid 

point than any other. This meant that grid cell polygons did not necessarily conform to census or 

municipal boundaries. Further, some grid cell polygons also crossed water features and 

levee/floodwall centerlines. Consequently, flood maps produced using CLARA outputs could convey 

misleading information about risk near protection features, or they could otherwise appear 

unnecessarily jagged due to the use of Thiessen polygons. CLARA v3.0 corrects for these issues in 

order to improve the communication of flood risk results in the 2023 Coastal Master Plan. 

APPROACH/METHODS 

The starting point for the grid update is the set of 2010 US Census blocks (98,514 GIS polygons) 

which made up the 2017 Coastal Master Plan model domain. These census blocks were split by the 

boundaries of municipalities and incorporated places defined by the US Census 2019 TIGER line files 

(US Census Bureau, 2019), yielding 100,552 polygons. Then, an overall line dataset was created from 

                                                           
1 Due to the curvature of the earth’s surface, there is small variance (<5 m) in the nominally 1 km 

spacing between a given regularly spaced point and the regularly spaced point to the north or south of 

it. 



2023 COASTAL MASTER PLAN. Risk Assessment 14 

 

several constituent datasets:  

 Project lines of Structure Type “Levee” (CPRA, May 2019) 

 Levee alignments generated for a Sea Grant project (Louisiana State University (LSU) 

Agricultural Center, June 2016) 

 Levee alignments used in ADvanced CIRCulation (ADCIRC) model (USACE, April 2019) 

 The final hurricane protection system lines from the 2017 Coastal Master Plan 

(CPRA, March 2017). 

This overall project line dataset was then used to further split the polygons, yielding 118,719 polygons 

(Figure 1).  

 

Figure 1. Splitting of 2017 Coastal Master Plan census blocks. 

These split polygons were then compared to the 113,692 model grid points used in the 2017 Coastal 

Master Plan. Each polygon containing zero grid points was assigned a newly created grid point located 

at the polygon’s center. As shown in Figure 2, each polygon containing multiple grid points was split 

into one polygon per contained grid point, such that the resulting set of Thiessen polygons each 

represented the area closest to its single grid point. Each polygon containing exactly one grid point 

was left as is. This further polygon splitting resulted in 134,590 polygons (referred to below as grid 

polygons), and the same number of grid points. 
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Figure 2. Splitting polygons containing multiple grid points into Thiessen 
polygons. Though grid points may appear to lie on a resulting polygon boundary, 

the points are simply very close to a boundary and do not intersect it. Note also 
that the resulting set of polygons is a merging of the original and Thiessen 

polygon boundaries. As such, the Thiessen Polygon Boundaries as shown also 
exist directly underneath each of the Original Polygon Boundaries.  

At this point, the team considered polygons representing ADCIRC weir voids: areas where ADCIRC 

model data would not be available, and inside which grid points should not be placed. The weir void 

polygons were buffered by 5 m to allow for geolocational error, and the weir buffer was overlaid with 

the original census blocks, the grid polygons, and the grid points to determine overlap. The spatial 

relationships of interest are: 

 Grid polygons within census blocks which themselves fall entirely inside the weir 

buffer. 

 Aside from the bullet above, grid polygons which fall entirely inside the weir buffer. 

 Other than polygons in the bullets above, grid cell polygons which fall partially inside 

the weir buffer. 

An example of these is shown in Figure 3 below. 
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Figure 3. Weir void buffer effects - before corrections. 

Polygons falling entirely inside a weir buffer, which belong to a census block which was not itself 

entirely contained within the weir buffer, were merged together on the ID of their parent census block. 

Then this set of polygons, and grid polygons within census blocks entirely within the weir buffer, were 

combined. Each polygon in the combined set was merged with exactly one neighboring grid polygon 

which did not fall entirely inside the weir buffer. A table is used to note the ancestry of each of the 

polygons combined in this way, which will be used to enable proportional distribution of population 

and housing data to the new, combined polygons. 

Finally, other grid polygons which fell inside the weir buffer only partially were considered. If their grid 

points fell inside the weir buffer, then those grid points were each snapped to (relocated to coincide 

with) the nearest location along the weir buffer boundaries.  

 

Figure 4. Weir void buffer effects - after corrections. 
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This procedure – splitting and reconciliation with weir void polygons – was applied with respect to the 

final project lines, with additional splitting along Integrated Compartment Model (ICM) compartment 

and additional community boundaries. This yielded a CLARA mesh consisting of 126,174 grid points, 

contained within the final domain shown in Figure 5 below. 

 

Figure 5. Final 2023 CLARA Domain. 

2.2 UPDATING FLOOD ELEVATION CALCULATIONS 

In previous versions of the CLARA model, the spatial unit of analysis consisted of paired grid cells and 

points. Grid cells are represented by polygons, while grid points are primarily located at the centroid of 

the corresponding grid cell polygon. Surge and wave characteristics were extracted from the ADCIRC 

and Simulating WAves Nearshore (SWAN) models at the grid point locations, and it was assumed that 

those values were representative of the surge and wave behavior at all points within the grid cell 

polygon. Further, the topographic/bathymetric elevation of the grid point was used when converting 

surge elevations and wave heights to peak flood depths.  

In a small number of instances, grid points were located in channels, culverts, or other narrow low-

elevation features within a grid cell polygon that was otherwise predominantly land. This resulted in 

the grid point being assigned an elevation value that was not representative of the elevation of 

inhabited land in its grid cell polygon, resulting in the possibility of flood depths being biased upwards 

for large portions of the grid cell polygon. This effect showed up in flood maps as polygons with 

substantially higher flood depth exceedances than neighboring polygons, and it may have biased 

damage calculations for assets within those grid cell polygons. 

To safeguard against this issue occurring in the 2023 Coastal Master Plan, two changes were made to 

the treatment of topographic elevations. Firstly, the team ensured that the grid point locations where 
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ADCIRC/SWAN data are extracted are not located in engineered low-elevation features, such as 

dredged channels or culverts that can be identified in the current conditions digital elevation model 

(DEM). This was done similarly to the process applied to manually move grid points that were located 

in weir voids in the ADCIRC mesh during the 2017 Coastal Master Plan. Secondly, the elevation used 

to calculate flood depths for any grid cell polygons containing land is no longer simply the topographic 

or bathymetric elevation at the grid point’s location. Instead, the team assigned an elevation equal to 

the areal median topographic elevation from the digital elevation model (DEM) over all land pixels 

within the grid cell polygon, as determined by the land-cover raster for each current or future 

landscape. 

ANALYSIS OF INTRA-POLYGON VARIABILITY IN TOPOGRAPHIC 

ELEVATION 

To support this decision, the team assessed the degree to which the median and mean elevation of 

land pixels are representative of topographic elevations within each grid cell polygon. While risk 

calculations will be based upon topographic elevations at the precise point where assets are located, 

the analysis supports the notions that (i) an areally-averaged topographic elevation is broadly 

representative of all points within a single grid cell polygon, and (ii) peak water surface elevations from 

individual storms should have low variation within grid cell polygons, based on topographic 

considerations. Ultimately, the team decided to apply the areal median in each grid cell instead of the 

mean because of its robustness to outlier pixels. 

Table 1 shows the number and percentage of CLARA grid polygons in Louisiana and Mississippi with a 

particular range of variability in topographic elevation, as characterized by the standard deviation in 

meters. The large majority of polygons are fairly uniform in their topographic elevation, with 80% 

having standard deviations less than 0.5 m, and 92% having standard deviations less than 1 m. 
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Table 1. Standard deviations of topographic elevations of CLARA grid polygons 
(meters). 

Elevation Standard Deviation (m) Polygon 
Count 

Percent of 
Polygons 

0.0 - 0.5 104,325 80.3 

0.5 - 1.0 15,760 12.1 

1.0 - 1.5 4,416 3.4 

1.5 - 2.0 2,120 1.6 

2.0 - 2.5 968 0.7 

2.5 - 3.0 562 0.4 

3.0 or greater 1821 1.4 

We visually inspected some of the polygons with outlier standard deviations, and grid cell polygons 

with large differences in their mean elevations compared to neighboring polygons, using satellite 

imagery. The bulk of these polygons with large variability and anomalous elevations were due to 

natural features such as the Avery Island and Weeks Island salt domes, while some were due to the 

presence of man-made structures such as elevated roadways. See Figure 6 for an example of an area 

where mean elevations have been skewed due to the presence of an elevated roadway.  
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Figure 6. Visual comparison of satellite imagery to DEM skewed by major roads. 

Note how the elevated roadway going from east to west in the middle of the 
image is clearly visible in the DEM (left) as it is in the satellite image (right).  

Figure 7 shows the number of polygons within each of the 2023 Coastal Master Plan communities 

with a standard deviation of topographic pixel elevations over 2 m (totaling roughly 2.5% of all 

Louisiana grid cells).2 Communities not shown had no polygons with standard deviations over 2 m. 

Outlying grid cells with larger elevation variability typically occur in higher-elevation inland communities 

such as Lake Charles and Covington, although some parts of St. Mary Parish also have this property.  

 

                                                           
2 The community boundaries described here were developed by a partner team at The Water Institute 

and will be documented in a separate appendix to the master plan. 
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Figure 7. Map of 2023 Coastal Master Plan communities depicting the number of 
polygons per community with intra-polygon elevation standard deviations in 

excess of 2 m. Base layer indicates community has zero such polygons. 

Comparing median land elevations to the grid point elevations assigned in the 2017 Coastal Master 

Plan provides additional insight into data quality and improvements in flood depth mapping that can 

be achieved for the 2023 Coastal Master Plan: 95.4% of 2023 polygons have median elevations 

within 1 m of the elevation assigned to a corresponding 2017 grid point; 97.1% are within 2 m. 

Further, the median and mean elevations are within 0.5 m of each other for 96.7% of grid cells, and 

within 1 m of each other for 98.9%. 

USAGE OF GRID CELL ELEVATIONS FOR MAPPING AND RISK 
ESTIMATION 

The median elevations assigned to each grid cell polygon are used as the basis for the development of 

flood maps and as an input to CLARA’s economic module. Each polygon has a representative point 

location associated with it where surge elevations will be extracted from the ADCIRC model. These 

surge elevations are assumed to be representative of surge throughout the polygon. The surge 

elevation, wave height, and median land elevation are used to generate flood depths on an individual 

storm basis for QA purposes, and are also used to generate storm surge and wave statistics to 

produce exceedance maps.  

In the economic model, surge and wave exceedance information is retained at the polygon level. For 

structural assets, these are used to calculate flood depth exceedances at each asset’s location. The 
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topographic elevation associated with each asset, used to calculate flood depths, is taken from the 

DEM pixel containing the centroid of the structure’s footprint. The median polygon elevation is used in 

the economic module for estimating risk to nonstructural assets such as agricultural crops and roads. 
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3.0 ASSET INVENTORY UPDATES 

Since the 2017 Coastal Master Plan, there has been a substantial increase in the quality and quantity 

of detailed, parcel-level land use and structure-level inventory data. This section describes the 

investigation of various parcel-level datasets currently available for coastal Louisiana and their 

potential strengths and weaknesses. This includes a description of how key inputs that might be 

incomplete or missing from existing sources, such as first-floor elevation or number of stories, could 

be augmented with recently conducted analysis. The report next discusses data acquisition, 

aggregation, and quality assurance/quality control conducted to produce a new structure-level asset 

inventory to inform CLARA risk assessment. Finally, this section concludes by describing how these 

data map to support structure-level damage calculations.  

3.1 STRUCTURE-LEVEL INVENTORY DATA SOURCES 

The best available asset inventory data at the time of the 2017 Coastal Master Plan analysis was 

assembled from several different sources, reflective of updates at different points in time at different 

levels of resolution. For example, the CLARA team was able to obtain individual parcel-level data from 

US Army Corps of Engineers (USACE) feasibility studies for selected regions (e.g., Morganza to the Gulf; 

Southwest Coastal), whereas for other regions the best available data were from older post-Katrina 

economics studies and only available as aggregate counts without detail on structure location or other 

attributes (Fischbach et al., 2017). 

Given limited data availability, the 2012 and 2017 Coastal Master Plans began with data aggregated 

by census block as a starting point for the asset inventory. This was found to be problematic when 

addressing lightly populated spatial units spanning relatively large areas. For the 2017 Coastal Master 

Plan, the project team used LandScan population estimates (Bhaduri et al., 2007) to improve the 

assignment of assets to specific grid cells, but the interpolation process introduced the potential for 

additional error or difficulty in interpreting. For example, this approach necessitated assigning 

fractional numbers of structures to each grid cell in lightly populated census blocks where specific 

asset locations were unknown.  

For the 2023 Coastal Master Plan, preliminary investigations suggested that it is now possible to 

assemble a structure-level database for the entire coastal region based on existing data sources: 

Microsoft building footprints3 blended with Google Street View4 (MS/GSV), both generated by artificial 

                                                           
3 Publicly available at: https://github.com/Microsoft/USBuildingFootprints  
4 Method described subsequently and in Chen et al. (under review).  

https://github.com/Microsoft/USBuildingFootprints
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intelligence (AI) and machine learning (ML) algorithms, USACE National Structure Inventory (NSI), and 

the Open Street Maps (OSM) building data layer for the State of Louisiana. Note that the NSI draws in 

part on Microsoft’s building footprint data, as well as additional data from Esri Business Analyst, the 

US Census, and FEMA’s HAZUS-MH software. Table 2 compares the relative number of structures in 

the model domain and the types of associated data by source. 

Table 2. Comparison of Selected Structure Data Types by Source. 
 

 MICROSOFT BUILDING 

FOOTPRINTS WITH 

GOOGLE STREET VIEW 

NSI (CORELOGIC, 

ESRI BUSINESS, 

HAZUS, CENSUS) 

OPEN STREET 

MAPS BUILDING 

LAYER 

STRUCTURES IN MODEL DOMAIN 780,715 746,005 171,700 (SEE 

NOTE) 

DATA TYPE POLYGON AND POINT POINT POLYGON 

ADDRESS X   

BUILDING TYPE X X  

PROPERTY USE  X  

BUILDING AREA  X  

ASSESSED VALUE  X  

CONTENT VALUE  X  

VEHICLE VALUE  X  

YEAR BUILT (>1992)  X  

ESTIMATED STORIES  X  

ESTIMATED RESIDENTIAL UNITS  X  

BASEMENT PRESENCE  X  

CONSTRUCTION MATERIAL  X  

FOUNDATION TYPE AND ESTIMATED 

HEIGHT 

X X  

ESTIMATED GROUND ELEVATION X X  

ESTIMATED FINISHED FLOOR ELEVATION X   

NFIP DATA  X  

CENSUS SOCIAL VULNERABILITY DATA  X  

Note: As a user-generated data source, OSM does not contain a complete 
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inventory and has uneven coverage, typically offering more detail in more 
densely built areas. 

Since the 2017 Coastal Master Plan, numerous local, state, and national organizations and 

governments have developed property-level flood analyses. For example, North Carolina’s Flood 

Insurance Rate Map viewer5 or First Street Foundation’s Flood Factor6 both examine residential 

assets at these levels, though with potentially varying levels of specificity and resolution within a 

particular geographic area or type. The new CLARA asset inventory, given a wider variety of property-

level uses intended for analysis, applies a structure-level approach while retaining characteristics 

derived from parcel-level datasets. For example, a university, oil tank farm, or offshore vessel port 

service area have single ownership with large land areas, but the structures located on these parcels 

may have substantially different exposures and vulnerabilities. In order to balance this level of detail 

with the need for computational efficiency across the simulation runs, and given coastal Louisiana’s 

relatively low variation in topography, the parcel-level characteristics were applied to each structure 

centroid. 

STRUCTURE DATA DERIVED FROM GOOGLE STREET VIEW IMAGERY 

In CLARA, the key structure attributes needed to inform risk estimates are the first-floor elevation, 

foundation type, square footage, and structure type (e.g., residential, commercial). For residential 

assets, valuation also relies upon the number of stories, construction quality, and the presence of a 

garage. For non-residential assets, valuation is based on an assumed replacement cost per square 

foot associated with the given building type, defined by HAZUS General Building Stock (GBS) codes 

(FEMA, 2009). 

As outlined in previous sections, other structure-level datasets may not contain some of these key 

attributes, particularly first floor elevation. However, the team has access to a coastwide dataset 

containing estimated structural attributes produced by applying automated image analysis to Google 

Street View (GSV) images. A team led by David Johnson utilized convolutional neural networks and a 

novel task relation encoding network to estimate first floor foundation and to classify buildings by 

residential or non-residential; foundation type as pier, concrete slab-on-grade, or other; and number of 

stories (Chen et al., under review). The learning algorithms were trained on 42,415 GSV images of 

properties in data from the Morganza to the Gulf Reformulation study (USACE, 2013), Southwest 

Coastal Louisiana Feasibility study (USACE, 2016), West Shore Lake Pontchartrain Feasibility study 

(USACE, 2014), and FEMA Elevation Certificates compiled by Jefferson Parish. The training data 

consists of structures from a total of ten coastal parishes, and the GSV imagery was acquired in 2018; 

the actual date of each image varies, but Google has typically refreshed GSV coverage in coastal 

                                                           
5 North Carolina's Flood Information Center available at: https://flood.nc.gov/ncflood/  
6 First Street Foundation Flood Factor available at: https://firststreet.org/flood-factor/    

https://flood.nc.gov/ncflood/
https://firststreet.org/flood-factor/
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Louisiana communities every one to four years, with more frequent updates occurring in urban areas 

such as New Orleans. 

Seventy percent of the reference images were used to train the building detection and attribute 

prediction models. Ten percent were used to calculate validation loss for every epoch of the learning 

process, and 20% were used to validate performance of the final models. The machine learning 

predictions have a mean absolute error of 0.17 m for first floor elevation and prediction accuracies of 

82.1% for foundation type, 93.7% for building type, and 98.3% for the number of stories. Model 

outputs for the three classification tasks also include confidence scores.  

In parts of the CLARA model domain where structure-level information was not available for the 2017 

Coastal Master Plan, CLARA previously applied average foundation heights by structure and 

foundation type taken from street-level surveys done by USACE in the 1990s. As such, utilizing the 

results from the GSV image analysis in the 2023 Coastal Master Plan will provide both a distribution of 

foundation heights within grid cell polygons (or structure-level first floor elevations if structure-level 

modeling is performed) and much more current estimates. Usage of spatial distributions of structural 

attributes in CLARA v3.0 is described in more detail in Section 3.6. 

Figure 8 shows the bias in damage estimates introduced by using average foundation heights and 

square footage for approximately 40,000 structures in the machine learning training data (all training 

data described above except for the Jefferson Parish assets), relative to the estimates from using their 

ground truth values for those two structural attributes. The figure presents bias by return period under 

the 2017 Coastal Master Plan’s current conditions landscape, where the percentage illustrated 

represents the proportional bias after summing up the damage estimates over all of the structures. 

This reveals that in the parishes where training data were available, using average values produces 

underestimates of risk from higher-frequency events, while overestimating risk from events with return 

periods greater than 50 years.   
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Figure 8. Bias in estimates of damage exceedances resulting from using grid cell 
polygon-averaged values for foundation heights and square footage, by return 

period (current conditions 2015 landscape). 

The above analysis only represents bias from using average foundation heights and square footage; it 

does not account for hyperlocal estimates of topographic elevations (i.e., the difference between 

topographic elevations at the location of a structure and the elevation assumed for its associated 

CLARA grid cell polygon), or other specific structural attributes. However, this limited analysis is 

suggestive of the value of using structure-level attributes.  

COMPARISON OF MICROSOFT/GOOGLE DATA TO OTHER 
STRUCTURE-LEVEL SOURCES 

A comparison of Microsoft building footprint data relative to aerial imagery revealed it was more 

accurate and complete than either NSI or OSM.7 As NSI also draws in part upon the Microsoft data, 

the MS/GSV data was selected as the primary “key” to match with other sources. In reviewing this 

data source, several artifacts of the AI/ML process were identified, such as tiling issues or attached 

structures being read as single buildings. These were particularly evident in the French Quarter and 

other dense areas of Orleans Parish. To improve the data quality in these areas and fill these gaps, the 

                                                           
7 OSM only had coverage in selected urban areas as a user-generated, non-systematic data resource. 

In contrast, NSI pulled upon several foundational data sources, but in several locations was clearly out 

of date relative to recent (re)development or had an extensive number of centroids located in wet-

lands and over water where there were clearly no structures. 
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centroid of the OSM footprints were appended. Across the model domain, 32,319 OSM structures had 

a centroid greater than 15 m from that of the Microsoft building data point (approximately 29,000 of 

these are within Orleans Parish). These OSM structure points, however, had no additional identifying 

information (aside from their ground square footage calculated in ArcGIS using the Southern Louisiana 

State Plane), necessitating a match to additional parcel data to obtain additional structure 

characteristics.  

Figure 9 shows in orange where OSM structure data supports the base Microsoft structure data in 

blue (with the model domain grid polygons as a background). There is a noticeable difference in 

Microsoft algorithm data quality (and OSM structure data availability) to the top left and bottom right 

of the image in Jefferson Parish. 

 

Figure 9. Microsoft (red points) and Open Street Map (blue points) Structure 

Centroid Data near New Orleans displayed on CLARA model grid. Note potential 
artifacts of missing structures in the Microsoft building footprint data extending 

from Irish Channel to Tulane’s campus, across City Park, and back toward the 
French Quarter and Marigny. 
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Tulane  
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3.2 PARCEL-LEVEL ASSET DATA SOURCES 

In order to assign asset attributes such as property use and valuation to the structures, two 

nationwide parcel-level datasets were compared with coverage in the Louisiana coastal zone. Each of 

these draws upon parish-level tax assessor data for the residential components, supplied via either 

CoreLogic or ATTOM Data Solutions (ATTOM).  

The Homeland Infrastructure Foundation-Level Data (HIFLD, secured and licensed through the 

Department of Homeland Security) also includes CoreLogic and Dun & Bradstreet’s commercial data. 

ATTOM is a proprietary purveyor of similar datasets engaged for their potentially favorable license 

terms, quality statistics, and additional data cleaning. Table 3 summarizes the availability of selected 

CLARA data inputs by database. 

Table 3. Comparison of Selected Parcel-Level Data Types by Source. 
 

 HIFLD (CoreLogic, Dun 

& Bradstreet) 

ATTOM 

Property Use X X 

Building Area  X 

Assessed Value X X 

Market Value  X 

Recent Sale Data X X 

Year Built (>1992) X X 

Estimated Stories Only Cameron Parish  

Estimated Residential 

Units 

Only St. Mary, St. James, 

St. Charles, and 

Plaquemines Parishes 

 

Bedrooms Only Cameron, 
Assumption, and St. 

James Parishes 

 

Foundation Type Only Cameron Parish  

 

Table 4 compares the relative strengths and weaknesses of each parcel dataset alongside the NSI, 

which are used for parcel-level information. Each data source is discussed further in the subsections 
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that follow. 

Table 4. Comparison of Relative Potential Value of Dataset Contributions to 
CLARA. 

 

ATTRIBUTE NSI (CORELOGIC, ESRI 

BUSINESS, HAZUS, CENSUS) 

HIFLD (CORELOGIC, DUN 

& BRADSTREET) 

ATTOM 

COST FREE VIA PRELIMINARY DATA 

USE AGREEMENT 

FREE VIA SECURE AND 

LICENSED DATA 

AGREEMENT 

REQUIRES ANNUAL 

SUBSCRIPTION 

POLYGONS AND POINTS 

OF INTEREST ARE A 

SEPARATE PRODUCT 

COVERAGE  NO QUALITY OR 

COMPARATIVE STATISTICS 

JEFFERSON DAVIS 

PARISH MISSING FROM 

CORELOGIC 

NO QUALITY OR 

COMPARATIVE 

STATISTICS  

 

SPATIAL ACCURACY CENSUS DATA FOR SOCIAL 

VULNERABILITY CRITERIA AT 

NEAR-PARISH SCALE 

CORELOGIC TYPICALLY 

PLACES CENTROID ON 

STRUCTURE, WHEREAS ESRI 

ASSIGNED TO STREET 

ADDRESS 

PARCELS NOT 

SUBDIVIDED INTO TAX 

LOTS 

 

PARCELS NOT 

CONSOLIDATED BY 

OWNERSHIP ENTITY 

POINTS ARE CENTROIDS 

OF PARCELS RATHER 

THAN STRUCTURE 

DATA ACCURACY NEED TO VERIFY ACCURACY 

OF FOUNDATION TYPES 

YEAR BUILT HIGHLY PARISH 

DEPENDENT 

INTERFACE BETWEEN 

CORELOGIC AND ESRI DATA 

PROVIDES UNIQUE 

CHALLENGES FOR HOTEL 

POPULATIONS 

RESIDENTIAL AND 

COMMERCIAL SPLIT 

REQUIRES SOME 

CORRECTIONS 

NON-RESIDENTIAL DATA 

NOT AS ROBUST 

COMMERCIAL PROPERTY 

DESCRIPTIONS ARE 

VERY BROAD 

 

CLEANING 

REQUIREMENTS 

ESTIMATED FIELDS (E.G., 

STORIES=289, 

VEHICLES=$108M) INCLUDE 

CLEAR ERRORS 

ALREADY CROSS-MAPPED TO 

CENSUS, DAMAGE, AND NFIP 

DATA - BUT THIS MAY 

INTRODUCE SPATIAL ERRORS 

 REQUEST REMOVAL OF 

PERSONALLY 

IDENTIFIABLE 

INFORMATION 

FILTER OUT SOME 

WETLAND, WASTE, AND 

VACANT PARCELS (AS 

MAY CONTAIN 

STRUCTURES) 
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USACE NATIONAL STRUCTURE INVENTORY 

In December 2019, the team obtained a review copy (subject to validation and licensing) of the latest 

version of USACE NSI. The NSI is a point-based structure inventory of mixed quality and coverage, 

developed to support various federal research efforts. The May 2019 release of USACE New Orleans 

District’s Upper Barataria study uses this version of NSI, for example, and demonstrates the value of 

their methodological approach.8 Based on the initial review, it is believed that this dataset is suitable 

to serve as a basis from which to build a new structure-level database for CLARA analysis.  

The NSI data has not previously been used outside of the federal government, and was generously 

made available for the 2023 Coastal Master Plan by the Louisville District of USACE. Other state 

agencies across the nation, however, are – or will soon be – exploring its usage as an authoritative 

base layer. Among other sources, the dataset draws upon CoreLogic proprietary residential parcel 

data, separately licensed Esri Business Analyst data, and Microsoft building footprints (Georgist, 

2019). As an additional benefit, the dataset is natively paired with both structural information from 

FEMA HAZUS, as well as socioeconomic indicators from other sources such as the US Census Bureau.  

NSI applies additional structure level data from other datasets where available. Where unavailable, 

these data are supplemented by older or more aggregate data available through HAZUS, and/or 

assumptions based on the HAZUS methodology. Figure 10 shows NSI coverage in Louisiana, with 

points colored by key data source (note that many points overlap at this scale). Figure 11 provides a 

zoomed in focus on Eastern New Orleans and St. Bernard Parish. Note that CoreLogic parcel data 

coverage is generally good in Orleans Parish, but that this dataset relies on older HAZUS data for 

residential buildings across the boundary into St. Bernard Parish. 

                                                           
8 The Upper Barataria Louisiana Feasibility Report was re-released in December 2020 and is available 

at: https://www.mvn.usace.army.mil/About/Projects/BBA-2018/studies/Upper-Barataria-Louisiana/ 
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Figure 10. NSI coverage in Louisiana by data source. 
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Figure 11. NSI coverage: Greater New Orleans/St. Bernard example. Note how 

political jurisdictions (e.g., parish boundary) determine data sources and thereby 
potential subsequent match quality. 

By pulling data from multiple sources, NSI provides coverage of all coastal Louisiana, but there is 

some local/regional variation in the validity of extrapolated structural characteristics based on 

underlying data sources, particularly in fine-scale location (whether at the structure’s centerpoint, 

parcel centroid, or address point along a street edge). Figure 12 provides an illustration of the 

implications of how NSI relates to structures versus parcels and roads by parish.   
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Figure 12. USACE National Structure Inventory matching methodologies near the 

confluence of Mississippi River and Industrial Canal. St Claude and Lower Ninth 
Ward are in Orleans Parish at left, whereas Chalmette at right is in St. Bernard 

Parish. Orange represents where GSV and NSI structures are located within the 
same parcel, red where GSV and NSI structures are within 15m of each other. 

Because NSI structures are located along the street edge in St. Bernard Parish, 

the polygonal and proximity matching were unable to produce a match (in blue). 

As such, the team notes that various assumptions inherent to the estimated NSI data need to be 

validated. For example, a March 2019 “Common Questions and Issues” document provided by USACE 

alongside the NSI dataset (not yet publicly available)9 described the reliability of the included 

foundation height data as dependent “... on the level of decision-making and study area. The 

foundation types are randomly assigned to structures based on probabilities that vary by several 

different conditions. Users should confirm that the distribution of foundation heights is reasonable for 

their study area.” A preliminary exploration suggested that foundation types and heights are skewed 

toward elevated typologies along Lake Pontchartrain, despite fewer appearing that way in GSV images. 

Similarly, the number of stories of a building is estimated based on several other variables, including 

units or employees and building footprint, rather than being directly recorded at the individual 

structure level. The outputs from the machine learning dataset, described in a later section, may be 

more reliable for these attributes in parts of the coast where these assumptions are employed by the 

NSI dataset. 

                                                           
9 USACE Louisville District, personal communication, December 2019. 
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Given the need for accurate and up-to-date data to inform the master plan’s risk estimates, the NSI 

data was supplemented with other sources. The project team explored two other potential parcel-level 

data offerings: CoreLogic (some of which forms the basis of NSI) and ATTOM. Both are proprietary 

products that draw their data from each parish assessor’s office (correcting for, but also in part 

accepting, the varying data quality). CoreLogic and ATTOM, however, take different approaches to their 

datasets, as indicated by discrepancies in their entry counts. For example, in Plaquemines Parish, 

ATTOM has approximately 25,136 unique geometries, versus CoreLogic’s 19,437 parcels and 33,389 

points.  

Despite the similar breadth in coverage of the two datasets, their quality and depth of detail were 

compared. The following sections provide more relevant details about each of them that will be useful 

in deciding how to best incorporate them into risk modeling for the 2023 Coastal Master Plan. 

CORELOGIC 

CoreLogic data was obtained from the federal government via the Homeland Infrastructure 

Foundation-Level Data (HIFLD) portal. The US Department of Homeland Security (DHS) has improved 

and diversified its offerings to State, Local, and Tribal Territories (SLTT) from what was available in 

2016 as Homeland Security Infrastructure Program (HSIP) Freedom and Gold data. SLTTs with or 

without a Presidential Disaster Declaration (PDD) can now access open, secure, and licensed data 

from CoreLogic, Dun & Bradstreet, and other providers. This real estate parcel and business point data 

is updated quarterly and can greatly increase the spatial resolution for structure-level risk and damage 

calculations.10 

The National Geospatial Agency (NGA) licenses residential and commercial parcel data from CoreLogic 

and releases it to the federal government as well as designated SLTT government partners. Available 

for download as well as geospatial web services/APIs, the data is unclassified, For Official Use Only 

(FOUO), and requires a need-to-know justification for HIFLD information that cannot be posted on 

unrestricted websites or applications. CoreLogic provides frequent update intervals (approximately 4.5 

million real estate transactions per month), data quality oversight, and standardization of codes 

across jurisdictions. Users of CoreLogic data include real estate professionals, mortgage banks and 

lenders, property and casualty insurers, and 21 federal agencies. Though purchased datasets for 

commercial users may include Personally Identifiable Information (PII) such as ownership data, NGA 

has removed this for the HIFLD Secure dataset. 

CoreLogic data is supplied in four separate files as residential or non-residential point and parcel 

                                                           
10 Since downloading parcel data in November 2019, HIFLD has updated its provider to Lightbox. A 

brief review did not find any substantial differences since the update. 
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ArcGIS File Geodatabases (in contrast to ATTOM’s single point-based dataset with parcel polygons 

available for purchase separately). CoreLogic describes the division between these categories as: 

...fundamentally defined by Property Indicator or a Land Use Code based on ownership 

and not on dwelling. For example; a record with a Property Indicator or Land Use Code 

that has an entry of Single Family Residence, or Mobile Home, will be delivered within the 

Residential Feature Class because of the ownership of the parcel or structure. In contrast 

to this; a record with a Property Indicator or Land Use Code of Nursing Homes or 

Apartment Complex, will be delivered within the Non-Residential Feature Class because 

of the commercial ownership of the parcel or structure.11 

CoreLogic also includes standardized land use codes, flags for manufactured homes, and several 

other construction characteristics that may or may not be used in various parishes. In the initial 

investigation of this dataset, it was observed that: 

 The split between residential and non-residential categories is somewhat 

inconsistent for categories such as mobile home parks    

 Non-residential assets appear to have less detailed information   

 Parcels are not subdivided into tax lots  

 The gross square footage values for building area are empty. 

In addition, CoreLogic currently does not include Jefferson Davis Parish. Follow-up conversations 

indicate that the parish is in the midst of geocoding its assessor data. Similarly, there are several 

municipalities within Jefferson Parish that manage their own parcel datasets independent of the 

assessors office and are likewise missing from the CoreLogic data (they are, however, interpolated in 

the ATTOM dataset). For these reasons, the team used the polygonal parcel boundaries from the 

CoreLogic data in the analysis, but deferred to ATTOM’s value-added analysis for the database’s parcel 

characteristics. 

ATTOM DATA SOLUTIONS 

For comparison, sample data of a competing product was obtained from ATTOM Data Solutions. 

Though the Data-as-a-Service (DaaS) licensing terms are generous, ATTOM’s primary disadvantage is 

cost (as HIFLD Open, Secure, and Licensed data are available free-of-charge to CPRA). Specifically, the 

team was interested in point-based property and owner data provided in tax assessor files as well as 

their proprietary market valuation metrics. Separate products are available for parcel boundaries as 

well as points of interest (comparable to Dun & Bradstreet). Similar to CoreLogic, ATTOM has 

standardized numeric codes to represent tax assessor data that may vary between parishes in 

                                                           
11 Source: https://gii.dhs.gov/hifld/data/secure/  

https://gii.dhs.gov/hifld/data/secure/
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Louisiana (let alone from counties across the entire country). 

The project team evaluated ATTOM’s “currency report” metadata for coastal Louisiana parishes. All 

jurisdictions had assessor data as of 2018 with valuation dates of May 2019, though Plaquemines 

(73%), St. Bernard (78%), and St. Martin (81%) Parishes did have tax coverage amount relative to 

population statistics that fell below 90%. Most other parishes had nearly 100% coverage, though 

Orleans Parish was on the cusp with 90% coverage. Geocoding had less than approximately 2% 

unavailability in all but the following parishes (Table 5), which without further investigation may be of 

concern. 

Table 5. ATTOM reported geocoding unavailability percentages greater than 

approximately 2%. 
 

Parish Geocoding Unavailability  

Vermilion 45.7% 

Tangipahoa 39.5% 

Lafourche 30.3% 

Iberia 28.7% 

Livingston 25.4% 

Ascension 22.1% 

St. Charles 17.3% 

Jefferson 14.8% 

Orleans 7.3% 

St. Bernard 5.8% 

Using Plaquemines Parish as an example for its range of built conditions across a large spatial area 

(Figure 13), property-use descriptions and building areas were mapped from ATTOM. Several artifacts 

were found in the data that showed its dependency on individual assessor methodologies. For 

example: 

 Nearly all parcels were updated in 2018, with only 800 parcels updated in 2017 or 

earlier. The oldest entry was from 2013. 

 Year of construction (rather than substantial renovation) data only applies from 

approximately 1992 onward. A select number of older construction dates were likely 
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added manually. 

 Nearly 4,000 parcels had zero built area. Some of these appear to be raised 

buildings from aerial photographs, while others appear to be manufactured homes. 

Approximately 5,000 parcels contain less than 1,000 square foot buildings. Some of 

these buildings have areas as small as 200 square feet, which could indicate 

manufactured homes, though they may be self-reported or an algorithmic error. 

(Note: CoreLogic data does not include building area, so the team was unable to 

corroborate.) 

ATTOM’s standardized property-use classifications were typically quite broad, such as the commercial 

(general) category including refineries, airports, and nursing homes. In addition, there were a few 

outliers in classification – for example, parcels in depopulated bayous or miscategorizations of some 

assets (e.g., a sewage treatment plant as a mobile home). Some of these errors were to be expected 

given the parishes’ original data quality and ATTOM’s proprietary interpolation algorithms – and this 

reinforced the value of blending multiple data sources and conducting manual quality control. 

  

Figure 13. Plaquemines Parish parcels categorized by ATTOM property 
descriptions and building areas (both residential and non-residential). 
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CORELOGIC AND ATTOM SUMMARY COMPARISON 

In addition to the key points listed above (Table 3), a major difference between the data providers is 

that CoreLogic typically provides a more accurate location for individual structures than ATTOM 

because the latter has not consolidated contiguous parcels and relies on centroids. Furthermore, 

CoreLogic typically would require less data cleaning on the actual land uses.  

Despite these substantial advantages of CoreLogic, there are some drawbacks. As shown in Figure 14, 

for example, CoreLogic typically includes two points – one at the centroid of the parcel (CEN) and the 

other in the center of the structure (ACQ) – whereas ATTOM has just the former. ATTOM, on the other 

hand, has fewer residential/non-residential classification errors. 

 

Figure 14. Comparison of CoreLogic and ATTOM data in the Grande Terre Estates 

subdivision of Belle Chase, Plaquemines Parish. 

Ultimately, having greater coverage of parcels beyond what is provided by the assessor office alone, 

more specific and corrected property use descriptions, as well as estimated market values justified 

the purchase of access to ATTOM data. Upon receipt from the provider, the team removed Personally 

Identifiable Information; processed delimitation, null data, and spacing issues; and extracted only the 
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required data fields across the 24 coastal parishes. 

3.3 MERGING STRUCTURE- WITH PARCEL-LEVEL DATA 

The team used the 780,715 Microsoft building footprints with interpolated GSV characteristics as the 

baseline structure dataset. The team then appended 32,277 Open Street Map structures – primarily 

located within Orleans Parish – for a total dataset of 812,992 structures, each with a unique CLARA ID 

at the end of the following process.   

The first step of matching parcel-level attributes was a spatial join with polygonal parcel boundaries. 

CoreLogic provided 1,371,815 parcels, to which the team supplemented another 42,570 parcels in 

the Gretna and Kenner municipalities of Jefferson Parish (obtained from their administrators). 

MS/GSV structures that did not spatial join (null) were retained for subsequent address- and proximity-

based matching. MS/GSV structures that spatially joined to multiple parcels (for example, a building 

where multiple parcels stack over the same XY points indicating vertically separated condominium-

style ownership) were similarly retained for subsequent address and proximity-based matching (multi-

matches).  

These polygons were then used to spatially join the CoreLogic parcel to ATTOM, NSI, and DNB point 

data. Like the step above, null and multi-matches were retained for subsequent address- and 

proximity-based analysis (except NSI, which lacks addresses). 

After systematizing the ATTOM and DNB address data (capitalization, highway abbreviations, etc.) the 

team used a hard (exact one-to-one relationship) text address comparison to identify additional 

matches.12 As a last step, all null and multi-match address matches were then proximity matched to 

ATTOM, NSI, and DNB using a 15 m search radius (based on typical urban street width as well as 

traditional long lot dimensions), assigning the closest point within that distance. It was assumed that 

after polygonal area, alphanumeric address, and radial distance proximity matches, the team was 

unlikely to characterize parcel-based attributes with any level of certainty to the structures, so this was 

the extent of the merging process. 

As a part of the QA/QC process, a data quality score was developed that examined the pairing 

methodology, cumulative presence of attribute fields, and overall rank for specificity of information for 

assigning depth damage function curves. The data pairing methodology was ranked using the 

                                                           
12 The team did not check for misspelling, misnumbering, or other data entry issues, but instead relied 

on other matching processes in cases where address errors might have carried through. 
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following point-based system: 

 CoreLogic Parcel Match (3)    

 Exact Address Match (2) - only possible for DNB and ATTOM 

 15 m Proximity Match (1)    

 GSV only (0).   

The team then cumulatively scored by non-null use or occupancy type data presence: 

 3 points for all DNB (NAICS6), ATTOM (PropertyUseStandardized), and NSI (occtype)   

 2 points for two    

 1 point for one    

 0 for GSV only (or if an OSM structure that then later matched through parcel or 

proximity). 

Last, the team ranked the data quality for assigning a depth damage function curve (to be discussed 

in the next section):   

 DNB (3)    

 ATTOM (2)    

 NSI (1)    

 GSV interpolation (0). 

Given the potential combinations, a score of six and above is high quality data (requires more than 

one data source). Scores between three and five are mid/usable quality data – indicating at least a 

proximity match of some sort. Two is not a possible score, and zero or one indicates that the team 

would need to infer from available GSV data.  

Figure 15 and Table 6 displays the variation in data quality across the model domain and by parish. 

Approximately 80% of the data is deemed high quality, with Jefferson Davis having a known issue with 

the lack of parcel information. Cameron and Vermillion Parishes also had lower data quality, with 

around 50% of their data being less than high quality, and Iberville Parish had some quality issues, but 

fewer parcels were impacted. Overall, there do not appear to be systemic impacts beyond lacking 

parcel data, which was intentionally valued low in the scoring. This is most apparent in Grand Isle, Port 

Fourchon, and rural or bayou areas. 
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Figure 15. Data quality across the model domain. Data quality is generally high, 

especially in built-up areas. The lack of reliable parcel data in Jefferson Davis 
Parish as well as in the bayous and along the Atchafalaya River resulted in low 

data scores for these areas.  
 

Table 6. Data Score by Parish. 
 

SCORE CATEGORY 

PARISH HIGH MID LOW TOTAL 

ACADIA 1,199 76% 226 14% 159 10% 1,584 

ASCENSION 41,078 91% 2,324 5% 1,590 4% 44,992 

ASSUMPTION 10,231 82% 1,116 9% 1,179 9% 12,526 

CALCASIEU 60,849 77% 9,125 12% 8,811 11% 78,785 

CAMERON 3,193 51% 1,275 20% 1,773 28% 6,241 

IBERIA 25,757 79% 3,457 11% 3,316 10% 32,530 

IBERVILLE 952 60% 155 10% 480 30% 1,587 

JEFFERSON 117,708 76% 26,429 17% 11,591 7% 155,728 

JEFFERSON DAVIS 2 0% 3,494 38% 5,647 62% 9,143 

LAFAYETTE 907 72% 213 17% 141 11% 1,261 

LAFOURCHE 35,402 76% 6,092 13% 4,962 11% 46,456 

LIVINGSTON 7,038 74% 1,471 15% 994 10% 9,503 

ORLEANS 101,719 75% 29,389 22% 5,196 4% 136,304 

PLAQUEMINES 8,205 69% 1,650 14% 2,102 18% 11,957 

ST. BERNARD 15,317 87% 993 6% 1,246 7% 17,556 

ST. CHARLES 17,965 80% 2,217 10% 2,241 10% 22,423 
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SCORE CATEGORY 

PARISH HIGH MID LOW TOTAL 

ST. JAMES 9,126 81% 1,213 11% 885 8% 11,224 

ST. JOHN THE BAPTIST 16,908 87% 1,068 5% 1,495 8% 19,471 

ST. MARTIN 1,260 68% 257 14% 329 18% 1,846 

ST. MARY 21,974 87% 1,885 7% 1,434 6% 25,293 

ST. TAMMANY 64,390 79% 10,147 13% 6,532 8% 81,069 

TANGIPAHOA 7,164 90% 423 5% 371 5% 7,958 

TERREBONNE 38,464 78% 7,566 15% 3,481 7% 49,511 

VERMILION 12,679 45% 6,120 22% 9,245 33% 28,044 

TOTAL 619,487 76% 118,305 15% 75,200 9% 812,992 

 

3.4 CROSSWALKS AND CORRECTIONS FOR DEPTH DAMAGE 

CURVES 

The parcel-level occupancy type, property use, and NAICS business codes allow for the team to assign 

depth-damage functions from HAZUS to individual structures. These were applied in that order of 

precedence, with NSI, ATTOM, and DNB datasets in increasing specificity. All structures have building 

and content damage functions, whereas some occupancy or use types also have inventory damage 

functions (FEMA, 2009). These were drawn from both USACE New Orleans and Galveston districts 

featuring common general building types to the region.  

Out of 812,992 potential structures, 73,897 could not be assigned a depth-damage function using an 

automated approach, either due to lacking occupancy or use information or the associated description 

was not specific enough to determine what the structure is (e.g., a seasonal house or an oil/gas well 

may be located on a wetland parcel). An extreme example of generic categorization impacting 

potential damage calculations was the Mercedes-Benz Superdome, which was classified under 

miscellaneous due to its multiplicity of uses, but perhaps better characterized for this model as 

“COM8” (entertainment and recreation structure). 

As structures with large ground square footages are likely the source of some of the largest potential 

damages and may have the greatest variability based on their depth-damage function, the team 

manually assigned occupancy types to the 1% largest in this remainder (greater than 45,749 square 

footage (SF)). These 619 structures were categorized alongside 13,782 other nearby structures 

sharing similar uses (e.g., a flagged oil tank within a larger petrochemical facility resulted in all null 

structures being assigned IND3) or having a systematic miscategorization (groups of manufactured 

homes outside of a cadastral system assigned RES2) or conflicting rental use types due to a large 
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ownership parcel (a medical office, COM7, within a shopping center, typically COM1). Through this 

quality assurance process, 1,080 centroids were identified that were not in fact structures. 

The remaining 59,496 structures were then assigned generic curves based on the ground square 

footage of the structures. Examining the distribution of ground square footage of common structure 

types by occupancy or use, the team inferred thresholds of: 

 Less than 1,400 SF assigned as a RES2 manufactured home (representing the 

median square footage, in between the dimensions of a single and double-wide; 

n=26,793) 

 Greater than or equal to 1,400 SF and less than 4,000 SF assigned as RES1 single-

family home (representing up to the 92.5th percentile of that type; n=24,897) 

 Greater than or equal to 4,000 SF and less than 14,000 SF assigned as COM1 retail 

or restaurant establishment (representing a typical spec unit development such as a 

pharmacy on a half-acre pad site; n=6,297) 

 Greater than or equal to 14,000 SF and less than 45,749 SF assigned randomly as 

COM2 (warehouse), IND2 (light industrial), or COM4 (services and utilities).  

As an additional quality assurance step, the team performed a manual check on the top 0.1% of 

ground square footage or market value of structures by occupancy or use type to ensure any potential 

extreme categorization errors would not negatively impact the results. For example, in New Orleans 

recent land use changes at the University Medical Center New Orleans and New Orleans VA Medical 

Center resulted in them being mischaracterized as residential typologies. Out of the 826 centroids 

checked, 19 were not structures (typically large-scale AI/ML error with sunglint or river barges) and 87 

were correct. The most error prone category was RES1 single family homes, of which only 18 of 580 

were correct (most were in fact COM1 retail or IND2 light industrial) and their large square footage 

indicated that they were miscategorization outliers as opposed to indicators of systemic coding issues. 

There were three common explanations for these specific errors. First, some parishes had land zoned 

as residential that appears to have been recently redeveloped for other purposes. Second, the 

dominant use may be residential, especially in mixed use urban areas with attached structures, but 

the ground floor uses may in fact be COM1 retail or COM4 services, among other functions. Third, NSI 

appears to preferentially assign RES1 when the use type is unknown.  

Figure 16 and Table 7 summarize the structure database by use code by both the number of centroids 

as well as the total ground square footage. RES1 single family homes represent 76.5% of structures 

as 61.3% of the ground square footage. The statistics demonstrate the importance of the quality 

assurance step, as RES6 nursing home and EDU1 elementary (or secondary) schools represent few of 

the total structures, but a large amount of ground square footage – as well as being of substantial 

interest for exposure and vulnerability calculations. 
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Figure 16. Map of asset level inventory by use type for Greater New Orleans. 
 

 

Table 7. Summary of asset level inventory by use. 
 

USE TYPE NUMBER OF 

STRUCTURES 

PERCENT OF TOTAL 

STRUCTURES 

TOTAL GROUND 

SQUARE FEET 

PERCENT OF TOTAL 

GROUND SQUARE FEET 

AGR       3,082  0.4% 10,113,201  0.4% 

AGR1        3,082  0.4% 10,113,201  0.4% 

COM 50,593  6.2% 461,921,802  19.8% 

COM1 33,151  4.1% 276,542,896  11.9% 

COM2 6,036  0.7% 71,108,087  3.1% 

COM3 1,077  0.1% 9,740,994  0.4% 

COM4 4,408  0.5% 50,299,595  2.2% 

COM5 137  0.0% 1,168,343  0.1% 

COM6 222  0.0% 8,478,744  0.4% 

COM7 1,904  0.2% 13,044,640  0.6% 

COM8 2,812  0.3% 24,192,733  1.0% 

COM9 351  0.0% 4,138,981  0.2% 

COM10         495  0.1% 3,206,789  0.1% 

EDU 1,892  0.2% 42,375,862  1.8% 

EDU1 1,585  0.2% 36,652,404  1.6% 

EDU2 307  0.0% 5,723,458  0.2% 
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USE TYPE NUMBER OF 

STRUCTURES 

PERCENT OF TOTAL 

STRUCTURES 

TOTAL GROUND 

SQUARE FEET 

PERCENT OF TOTAL 

GROUND SQUARE FEET 

GOV 1,210  0.1% 13,469,765  0.6% 

GOV1 1,033  0.1% 12,084,984  0.5% 

GOV2 177  0.0% 1,384,782  0.1% 

IND 12,244  1.5% 105,024,804  4.5% 

IND1 2,981  0.4% 11,144,982  0.5% 

IND2 3,580  0.4% 43,713,257  1.9% 

IND3 4,234  0.5% 30,473,539  1.3% 

IND4 730  0.1% 10,876,009  0.5% 

IND5 90  0.0% 3,486,586  0.1% 

IND6 629  0.1% 5,330,431  0.2% 

REL 2,324  0.3% 17,483,725  0.8% 

REL1 2,324  0.3% 17,483,725  0.8% 

RES 740,526  91.2% 1,679,041,892  72.1% 

RES1 621,029  76.5% 1,427,214,555  61.3% 

RES2 67,004  8.3% 90,344,203  3.9% 

RES3 51,315  6.3% 148,351,556  6.4% 

RES4 666  0.1% 8,085,803  0.3% 

RES5 430  0.1% 3,122,641  0.1% 

RES6 82  0.0% 1,923,135  0.1% 

TOTAL 811,871  100.0% 2,329,431,052  100.0% 

STRUCTURES 

REMOVED IN QA/QC 

          

1,121  
0.1% 26,388,675 1.1% 

 

3.5 CRITICAL INFRASTRUCTURE ASSET INVENTORY UPDATES 

Similar to the general structure inventory, there have been substantial improvements to data available 

that characterize critical infrastructure within the DHS HIFLD catalog. The team drew upon the 2017 

Coastal Master Plan critical infrastructure table as well as a current Governor's Office of Homeland 

Security and Emergency Preparedness (GOHSEP) tracking spreadsheet to summarize previously 

identified strategic assets and key resources. DHS CISA now considers best practice to be a sector-

based analysis (e.g., Chemical, Energy, Transportation Systems) with subsectors that map closely to 

HIFLD layer names (e.g., Oil and Gas Infrastructure, Aviation, Maritime Transportation Systems). Like 

the CoreLogic and Dun & Bradstreet data, various layers are subject to use restrictions ranging from 

being open to the public or secure, licensed, or FOUO.  

As of this report writing, these critical infrastructure updates remain in progress, and this section will 
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be updated once CPRA and the Risk Assessment team have confirmed the sources and data layers to 

inform critical infrastructure exposure. 

3.6 STRUCTURE LEVEL DAMAGE ANALYSIS IN CLARA 

The new structure-level dataset presents the opportunity to estimate damage and risk at the structure 

level for the first time. This will improve estimates of risk, enable more targeted risk communication to 

residents and stakeholders, and provide more flexibility and customization when designing 

nonstructural projects.  

The team has refactored CLARA v3.0’s damage model to utilize individual structural assets as the unit 

of analysis. Structure attributes such as foundation heights, square footage, and the number of stories 

are applied to produce structure-level estimates of replacement costs and to select an appropriate 

damage curve. Vulnerability will be estimated using the geospatial location, and associated 

topographic elevation, of the building. Because flood depth exceedances are calculated at the grid 

point level, the exceedance curve is adjusted using the difference in topographic elevation at a 

building’s location and the median land elevation within the building’s associated grid cell polygon 

(see Section 2.2).  

Valuation of the replacement cost is still calculated using HAZUS methodology, meaning that 

replacement cost is predominantly estimated as the product of square footage and a replacement 

cost per square foot. This still represents an improvement, given that the team will use the actual 

building square footage rather than an average value for buildings of the same type. The unit costs per 

square foot will still come from HAZUS assumptions, however. Because the team does not capture all 

structure attributes relevant to value (e.g., construction quality), this implies that damage estimates 

should still not be reported at a structure level, but instead be aggregated to a larger spatial unit such 

as a community scale. 

Where structure-level attributes are not available, either for particular properties or in larger regions of 

the coast, CLARA still uses a structure-level model. In this case, however, structure attributes are 

sampled from a distribution of attribute values for buildings of the same type that is empirically 

calculated over the census block group or tract level (depending on the number of such buildings 

available to estimate a distribution). For example, if a foundation height is unavailable for a particular 

structure (due to obstruction by fences, vegetation, etc. in GSV imagery), this uncertainty is 

incorporated into the risk estimates through Monte Carlo sampling and propagating the resulting 

sampled attributes through the damage calculations. The team developed generic default 

assumptions and damage curves for use in the case where a building’s type cannot be determined, as 

described in Section 3.4. 
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4.0 UPDATES TO STATISTICAL 

METHODS 

4.1 JPM-OS UPDATES 

The 2017 Coastal Master Plan characterized the probability of tropical cyclone occurrence using a 

modified JPM-OS method adapted from Resio (2007) (Fischbach et al., 2017). Storm occurrence was 

modeled as a stationary Poisson process, and storm attributes consisting of landfall location, heading, 

central pressure deficit, radius of maximum winds, and forward velocity were modeled using a 

conditionally independent structure. The distributions were fitted using a subset of the historical 

record of storms found in the National Oceanic and Atmospheric Administration’s (NOAA) North 

Atlantic Hurricane Database (HURDAT), specifically those storms making landfall in the study region 

from 1950 to 2014 with a central pressure less than or equal to 985 millibars. Landfall location was 

given an empirical probability mass function, discretized at each degree of longitude. Heading, radius 

of maximum winds, and forward velocity were treated as conditionally normally distributed. Central 

pressure was assumed to follow a Gumbel distribution with parameters dependent on the landfall 

location. The distributions were trained on the assumption of stationarity throughout the historical 

record, with future changes in storm frequency and average intensity treated as scenario 

assumptions. 

Several changes were made to this methodology for the 2023 Coastal Master Plan, largely in response 

to new methods developed by USACE Engineer Research and Development Center (ERDC) Coastal and 

Hydraulics Laboratory (Nadal-Caraballo et al., unpublished). The most notable of these methodological 

advances is an augmented version of the HURDAT dataset in which previously unobserved values for 

the radius of maximum winds and central pressure deficit are imputed, and which includes all tropical 

cyclones in the HURDAT record making landfall within the study region. This substantially increases 

the size of potential training data early in the historical record and decreases the number of bootstrap 

iterates required to characterize the sampling uncertainty of the historical record.  

Additionally, the updated methods assume a Weibull distribution for central pressure, and a lognormal 

distribution for radius of maximum winds instead of a normal distribution; they also use a longer 

period of record reaching back to 1938 rather than the 1950 start date used by CLARA. The 2023 

Coastal Master Plan wholly adopts the new augmented HURDAT dataset. The team evaluated and 

accepted the use of the lognormal distribution for radius of maximum winds on the basis of 

maximizing the log-likelihood of the historical record conditionally upon the resulting estimated 

distribution. The team elected to continue to use a Gumbel distribution, as it is parameterized by a 
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scale and location parameter whereas the Weibull distribution is parameterized by a scale and shape 

parameter. The use of the Gumbel distribution therefore permits us to adjust the average central 

pressure without changing the variance – in line with the scenario assumptions regarding changes in 

central pressure – which is not possible with the Weibull distribution. The team’s understanding is that 

one reason for ERDC adopting the Weibull distribution was to obtain a slightly better fit far into the tail 

of the distribution, consistent with their charge to estimate 10,000-year surge elevations (0.0001 

annual exceedance probability (AEP)). The most extreme value generated by CLARA is the 2,000-year 

value (0.0005 AEP), so the extreme tail considerations are less critical. Further, USACE operating 

guidance recommends that either one of the distributions may be used (USACE, 2012).  

The team evaluated the use of 1938 as a start date for the period of record but retained the use of 

1950 due to concerns about the impact of non-stationarity in the distribution of central pressure 

deficits. The further back the period of record goes, the less strongly climate and meteorological 

conditions at the beginning of the period reflect existing conditions. To further allay these concerns, 

the team incorporated a linear drift term into the model of historical central pressure deficit, used to 

estimate the distribution of central pressure deficit: this change improved the log-likelihood of the 

distributional fit. While Nadal-Caraballo et al. (unpublished) introduces a number of other 

methodological advancements, these were found to be incompatible with CLARA’s risk estimation 

framework and were therefore not incorporated into the 2023 Coastal Master Plan. Therefore, the 

final joint probability function fit to the new version of CLARA is the following:  

Λ(𝑐𝑝, 𝑟, 𝑣𝑓, 𝜃𝑙 , 𝑥) = Λ1 ∙ Λ2 ∙ Λ3 ∙ Λ4 ∙ Λ5 

Λ1 = 𝑓(𝑐𝑝|𝑥) =
𝜕

𝜕𝑥
{exp {− exp [−

𝑐𝑝 − (𝑎0(𝑥) + 𝑎1(𝑥)𝑡)

𝑎2(𝑥)
]}} 

Λ2 = 𝑓(𝑟|𝑐𝑝) =
1

𝑟𝜎(cp)√2𝜋
𝑒
−
(ln𝑟−𝑟̅(𝑐𝑝))

2

2𝜎2(𝑐𝑝)  

Λ3 = 𝑓(𝑣𝑓|𝜃𝑙) =
1

𝜎√2𝜋
𝑒
−
(𝑣𝑓̅̅̅̅ (𝜃𝑙)−𝑣𝑓)

2

2𝜎2  

Λ4 = 𝑓(𝜃𝑙|𝑥) =
1

𝜎(𝑥)√2𝜋
𝑒
−
(𝜃𝑙̅̅ ̅(𝑥)−𝜃𝑙)

2

2𝜎2(𝑥)  

Λ5 = 𝑓(𝑥) = Φ(𝑥) 

Where the storm parameters are central pressure 𝑐𝑝 in millibars (mb), radius of maximum windspeed 

𝑟 in nautical miles (nm), forward velocity 𝑣𝑓 in knots (kt), location of landfall 𝑥 in degrees longitude,13 

and landfall heading 𝜃𝑙 in radial degrees east of due north. 

                                                           
13 CLARA utilizes an idealized Louisiana coastline represented by a straight line west to east at 

29.5°𝑁, implying that landfall can be characterized only by the longitudinal location. 
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4.2 STORM SELECTION FOR THE 2023 COASTAL MASTER PLAN 

The new set of available synthetic storms developed by ERDC consists of 645 storms that span a 

wider range of the possible Atlantic cyclone parameter space than the previous corpus of 446. For 

example, central pressures at landfall range from 1005 mb to 865 mb, representing everything from 

minor tropical depressions to Category 5 hurricanes considerably stronger than any ever observed in 

the Atlantic basin. “Master” storm tracks were developed that make landfall with headings that vary by 

20 degrees. Each of these master storm tracks was then shifted east and west repeatedly by spacings 

of 60 km until enough tracks were generated to span the Gulf region. The resulting set of tracks is 

shown below in Figure 17. There are a total of 15 tracks that make landfall with a heading of due 

north, with other headings having a smaller number of tracks spaced over the study region. Seven or 

eight synthetic storms are placed on each track with different values for central pressure, radius of 

maximum windspeed, and forward velocity. 

 

Figure 17. Synthetic storm tracks represented in the ERDC 645-storm suite. 

As in previous master plans, the available corpus of synthetic storms is larger than can feasibly be 

simulated over the range of time periods, scenarios, and project meshes that are required to support 

plan development. A reduced subset of storms is needed that produces flood depth exceedance 

estimates similar to those which would be generated by the entire suite. Rather than analyzing a large 

number of reduced storm sets in CLARA, as described in Fischbach et al. (2016), the team has 

collaborated with ERDC to leverage their capabilities in storm set reduction. 
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ERDC developed a genetic algorithm that starts with a randomly selected set of storms that is small in 

number but sufficient for the joint marginal distributions to be identifiable. Upon requesting options for 

storm sets between 80 and 100 storms, ERDC produced a set of 95 storms for potential use in the 

2023 Coastal Master Plan. Five of the storms were discarded from use because they do not make 

landfall near enough to the study region to have an appreciable impact on flood depth exceedances. 

Henceforth, this reduced storm set is referred to as the “90-storm set”. 

The team next compared estimated surge elevation exceedances based upon the remaining 90 

storms from the ERDC reduced storm set to estimates derived from the full suite of 645 storms. The 

team then used an additional algorithm to incrementally add and remove synthetic storms for this set, 

five at a time, on the basis of how much the accuracy of exceedance estimates improves when 

compared to the reference estimates. This process is detailed in Section 4.4 below. 

4.3 PRELIMINARY ANALYSIS RESULTS AND COMPARISON 

ERDC’s analysis was based on estimated surge elevation exceedances at 427 sample points shown in 

Figure 18. These points are a mix of ICM compartment centroids, unprotected CLARA grid points, and 

points along the boundary of enclosed protection systems. Each point was equally weighted, and the 

analysis examined return periods ranging from the 2-year (50% annual exceedance probability) to 

10,000-year (0.0001% AEP). 

 

Figure 18. Sample points used to evaluate reduced storm subsets. 

Using CLARA, the team also ran a number of test cases for comparison, summarized as follows: 

 446 storms used by 2017 Coastal Master Plan 



2023 COASTAL MASTER PLAN. Risk Assessment 52 

 

 92 storms used to represent current conditions in 2017 Coastal Master Plan 

 645 storms available for use in 2023 Coastal Master Plan 

 90-storm set proposed by ERDC (surge values directly used as inputs) 

 90-storm set proposed by ERDC (surge predictions from response surface) 

 100-storm set (response surface trained on 90-storm set, with predictions on 10 

additional interpolated storms) 

 321-storm set (response surface trained on 90-storm set, with predictions on 231 

additional storms with extrapolated and interpolated parameters).  

Sets 4 and 5 varied by whether or not the surge values used to estimate the exceedance curves were 

the actual ADCIRC surge values or values predicted for those storms by the CLARA response surface 

model. Sets 6 and 7 added more storms to the response surface’s prediction set, with Set 6 including 

10 storms contained in the convex hull of the 90-storm set over the parameter space. Set 7 included 

all storms that could be predicted when using the 90-storm set as the training set, i.e., storms 

excluded from Set 7 are on master tracks not represented in the 90-storm set. 

For the ease of computation (and because surge and wave data at ICM compartment centroids are 

unavailable from 2017), the analysis focused only on sample points that represent unprotected CLARA 

grid points. Every case calculated surge elevation exceedances, which were then converted to surge 

depths using the 2023 Coastal Master Plan’s existing conditions DEM; this avoids the introduction of 

differences from using different DEMs.  

In analyzing this generated dataset, the team found that draft results from the 2023 meteorology (i.e., 

available synthetic storm sets) generally result in higher estimates of surge depth exceedances than 

results from the 2017 storm sets. This is illustrated in Figure 19, which shows the differences 

between the 446-storm set available in 2017 and the 645-storm set available for use in 2023. This 

finding is intuitive based on the wider range of storm parameters represented in the 645-storm set, 

including tropical depressions and tropical storms that occur more frequently.  

It appeared that the ERDC 90-storm set produced sufficiently accurate estimates of flood depth 

exceedances for planning purposes. Table 8 summarizes the root mean squared error of the 90-storm 

set compared to the 645-storm baseline. Referring back to the storm selection analysis done to 

support the 2017 Coastal Master Plan, as described in Fischbach et al. (2016), the team found that 

the RMSE values shown in Table 8 are less than the RMSEs that were judged to be acceptable when 

selecting the 92-storm set and 60-storm set adopted in 2017 for the current and future landscapes, 

respectively. 
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Table 8. Root mean squared error (ft) over all sample points of the ERDC 90-
storm set, relative to the 645-storm baseline. 
 

Return Period Depth RMSE Elevation RMSE 

10-Year 0.44 0.79 

50-Year 0.73 1.17 

100-Year 0.64 1.13 

500-Year 1.22 1.61 

However, ERDC’s 90-storm set systematically overestimated surge depth exceedances, as shown in 

Figure 20 over a range of return periods. The team continued to adjust the reduced storm set by 

adding and subtracting low-intensity storms in order to correct for this systematic bias, with the goal of 

identifying a storm set with a similar number of storms that exhibits similar or better RMSE with no 

apparent spatial patterns of bias. 
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Figure 19. Differences in flood depths by return period between 645- (2023) and 
446-storm (2017) sets. 
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Figure 20. Differences in flood depths by return period between 645- and ERDC 
90-storm sets. 
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4.4 FINAL REDUCED STORM SET AND ANALYSIS RESULTS 

The bias identified in the ERDC 90-storm set likely stems from differences between the JPM-OS 

methodology used in developing the set and that which is being used for the 2023 Coastal Master 

Plan. The ERDC storm set reduction approach also weighted biases estimating the 10,000-year 

exceedance equally with the more frequent return periods relevant to the master plan. The team 

therefore elected to refine the ERDC 90-storm set by swapping some number of storms in and out in 

order to achieve better performance in light of the 2023 Coastal Master Plan JPM-OS approach. The 

team applied a heuristic algorithm that evaluates all possible additions to the set, selecting the 

addition that provides the best improvement (i.e., the largest reduction in average RMSE over the 10-, 

50-, 100-, and 500-year return periods). It then evaluates all possible removals from the set, selecting 

the best removal. The algorithm is then said to converge at an iteration where the same storm is 

added and immediately removed again. While there is no guarantee that the resulting storm set is 

globally optimal (in the sense of being the best possible 90 storms to use), it did produce a reduced 

storm set which does a substantially better job of producing exceedance estimates similar to the 645-

storm set. 

The final set produced by the heuristic algorithm has similar characteristics to the initial 90-storm set 

produced by ERDC in terms of the distributions of central pressure, radius, forward velocity, landfall 

angle, and landfall location. However, the final set includes 38 storms not present in the ERDC set. 

Figure 20 and Figure 21 show the performance of the ERDC 90-storm set and the final 90-storm set 

respectively, as compared to the full 645-storm suite. Table 9 shows the aggregate performance as 

RMSE by return period over the sample points. 

Table 9. Root mean squared error (ft) over all sample points of the final 90-

storm set, relative to the 645-storm baseline. 
 

Return Period Depth RMSE Elevation RMSE 

10-Year 0.03 0.11 

50-Year 0.13 0.20 

100-Year 0.17 0.33 

500-Year 0.18 0.29 
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Figure 21. Differences in flood depths by return period between the 645-storm 
set and the final 90-storm set. 

 

To confirm that the final 90-storm set performs well across the entire coast, the team then evaluated 

the differences in surge depth exceedances over all unenclosed CLARA grid points between this 

reduced storm set and the full 645-storm suite. The RMSE by return period, shown in Table 10, 

confirms that the set still performs well, with values much less than a foot at all four return periods. 
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Table 10. Root mean squared error (ft) over all unenclosed points of the final 90-
storm set, relative to the 645-storm baseline. 
 

Return Period RMSE 

10-Year 0.28 

50-Year 0.36 

100-Year 0.43 

500-Year 0.64 

Concluding the analysis of reduced storm sets, the team provides several additional coastwide results. 

Figure 22 shows the surge depth exceedances from the final 90-storm set at all unenclosed CLARA 

grid points in Louisiana. Figure 23 shows the difference between exceedances produced by this set 

and the full 645-storm suite, where only differences greater than 0.5 ft are shown. In Figure 23 and 

Figure 24, blue indicates that the final 90-storm set values are greater than the comparison set, while 

orange indicates lesser values. From these comparisons, it is observed that the draft existing 

conditions storm surge depth exceedance values using the final 90-storm set are generally greater 

than those estimated for the current conditions landscape of the 2017 Coastal Master Plan. The team 

believes this is primarily due to the inclusion of less intense but higher-frequency storms in the 645-

storm suite.  

Finally, Figure 24 shows the difference between the final 90-storm set and the exceedance values 

produced by the 92-storm set used for current conditions in the 2017 Coastal Master Plan. The final 

90-storm set also does not exhibit clear patterns of systematic bias over spatial points or across all 

return periods. 
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Figure 22. Surge depth exceedances associated with the final 90-storm set. 
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Figure 23. Difference in surge depth exceedances between the final 90-storm set 
and the 2017 Coastal Master Plan’s current conditions case. Differences less than 

0.5 ft not shown. 
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Figure 24. Difference in surge depth exceedances between the final 90-storm set 
and the full 645-storm suite. Differences less than 0.5 ft not shown. 
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5.0 ASSET GROWTH MODEL 

5.1 INTRODUCTION 

Previous planning cycles have utilized multiple scenarios representing possible futures for population 

growth and changes in asset inventories over time. This remains a deep uncertainty about future 

conditions that can have a substantial impact on point estimates of baseline exposure and risk 

reduction achievable by the 2023 Coastal Master Plan.  

The 2017 Coastal Master Plan partitioned the coastal region into three bins with different growth 

rates; the team parameterized future scenarios using an assumed overall coastal population growth 

rate and the differential in population growth between bins. The team assigned each spatial location 

to a bin based on a composite index of 100-year flood depth, land change, and population density. 

Further, population in CLARA polygons that convert entirely to open water in future conditions was 

assumed to be zero, meaning that residents would relocate under these circumstances and any 

assets would no longer be present or exposed to future flood risk. 

However, risk estimate results in both the 2012 and 2017 Coastal Master Plans typically varied less 

across the different modeled population and asset growth scenarios than across environmental or 

fragility scenarios. The rank-ordering of projects during alternative formulation was thus largely 

insensitive to assumptions about economic growth. Given these prior findings, for 2023 Hauer (in 

preparation) has developed a single parameterization of future population growth.  

The following subsections describe the updated methods applied for population and asset growth in 

CLARA v3.0 for the 2023 Coastal Master Plan, as well as opportunities to expand upon this work in 

future master plan iterations. The report then briefly reviews recent scientific literature regarding risk-

driven mitigation that justifies the simplified approach. Finally, the team discusses implementation 

details and options for addressing migration induced by sea level rise for the 2023 Coastal Master 

Plan and notes the recommended relationship between changes in population and assets. 

5.2 APPROACHES AND METHODS 

POPULATION CHANGE 

The growth models for previous iterations of master plan analyses were informed by a literature review 
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suggesting that population growth and spatial migration patterns are more conclusively driven by 

historic patterns and demographic factors; existing literature on risk-driven migration, as described in 

Section 9.2 of Fischbach et al. (2017), was as yet inconclusive. As noted above, the 2017 Coastal 

Master Plan employed a scenario analysis where population growth scenarios varied by the overall 

coastal average annual growth rate and the extent to which people disproportionately migrated to 

areas at lower risk. 

In this section, the team outlines methods developed by Hauer and colleagues to project coastal 

population change, then describe show they have been adapted for the master plan and improved 

using the more detailed risk information produced by the CLARA model.  

Hauer’s contribution to the 2023 Coastal Master Plan, documented in a separate report (Hauer, in 

preparation), follows a similar conceptual approach to much of his previous work (Hauer et al., 2016; 

Hauer, 2017, 2019). Population changes over a 𝜏-year period are calculated empirically based on 

historical census data, stratified by spatial units and characteristics such as population, age, sex, and 

race at the census block group level.14 This yields a rate of change for each time interval. A time 

series model (e.g., ARIMA) is then fit to this rate-of-change data. The underlying model parameters are 

assumed to remain stationary moving into the future. This creates projections of population rates of 

change which are then translated into projected future populations.  

The assumption of stationary trends in population change is a reasonable null hypothesis for baseline 

population projections. Future work could build off this structure to link population growth dynamics to 

Intergovernmental Panel on Climate Change (IPCC) Shared Socioeconomic Pathways (SSP) (O’Neill et 

al., 2013) via an established population normalization approach (Hauer, 2019). Hauer’s projections 

for the 2023 Coastal Master Plan include the covariance structure between the populations of 

different census block groups as well as 80% confidence bounds. This permits the team to account for 

aleatory and epistemic uncertainty in population during the damage calculations. 

POPULATION RESPONSE TO SEA LEVEL RISE 

Hauer (2017) explores population migration induced by inundation due to sea level rise. This is 

accomplished by exploiting “migration corridors” based on IRS data on county-to-county migration 

(Internal Revenue Service, 2019). The method estimates a migration rate for each origin-destination 

pair of counties in the data, which is then normalized to forecast an expectation of where individuals 

displaced by inundation would relocate. Out-migrants from an affected county are assumed to leave 

their county and are distributed proportionally among possible destinations. If a growth model projects 

in-migration to a county also affected by inundation, then the growth is reduced: if p percent of the 

population of a destination county are inundated (i.e., by future tides due to sea level rise), then p 

                                                           
14 Block groups vary in spatial extent, but typically have a population of about 600 to 3,000 people. 
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percent of project in-migrants are instead routed proportionally to other destinations of their 

respective originating counties, while 100-p percent of the in-migrants continue to relocate to the 

affected destination county.  

COMPATIBILITY OF HAUER’S METHODOLOGY WITH 2017 COASTAL MASTER PLAN 

METHODOLOGY 

As mentioned above, the methods from Hauer (2017) explicitly account for land change in a binary 

fashion, assuming that locations are either inundated by sea level rise or unaffected by sea level rise. 

Any effect of population density on population growth rates which act at the census block group level 

or higher are captured by Hauer’s modeling population growth rates at the census block group level. 

His previous work redistributing populations living in fully inundated areas along migration corridors 

expands upon assumptions made in the 2017 Coastal Master Plan in which residents of fully 

inundated areas are assumed to migrate out of the study domain. This approach could be adapted to 

incorporate land-change information from the 2023 ICM outputs, allowing the team to use ICM open-

water classification to determine which areas become uninhabitable rather than using mean future 

tide levels under a bathtub model of sea level rise. Habitability is a relative and socially complex 

notion, so this may be an assumption to revisit in future master plan efforts.  

The 2023 Coastal Master Plan uses methods from Hauer (in preparation) to produce a baseline 

population forecast, but does not utilize the migration corridor approach described above. The team 

has therefore retained the use of implicit prior assumptions that residents displaced by the inundation 

of their homes relocate to communities inland of the study region. Future master plan iterations may 

adopt the methodology used in Hauer (2017) to more accurately predict the migration of displaced 

populations. However, this method does not incorporate nonstationary endogenous feedbacks in 

migration dynamics, and would need to be modified to model intra-parish relocations, which could be 

significant in some coastal Louisiana regions with substantial variability in vulnerability within the 

parish (e.g., Jefferson Parish). 

REVIEW OF SCIENTIFIC KNOWLEDGE OF RISK-INDUCED DEVELOPMENT AND 

MIGRATION 

The method described above considers only stationary endogenous migration and migration due to 

the loss of habitable land. This therefore carries the implicit assumption that migration is not further 

affected by storm surge-based flood risk. The “levee effect” – the extent to which migration is 

influenced by risk – is an active field of study. Many researchers are attempting to quantify the 

strength of a levee effect and the circumstances under which it occurs. A review of recent literature 

suggests that the state of scientific knowledge of risk-induced development is not sufficiently 

advanced to provide clear guidance on modeling it. The team therefore does not recommend 

additional modeling activities to incorporate risk-induced migration (e.g., disproportionate growth 

behind levees), beyond the potential use of migration triggers described above. Some relevant work is 
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summarized here to illustrate the current state of scientific knowledge and ideas on this issue, which 

should be a useful reference when considering future applications to Louisiana’s coastal planning 

process. 

Browne et al. (2018) found that in non-coastal areas, a community’s participation in the National 

Flood Insurance Program (NFIP) led to increased growth, as measured by the number of new housing 

units constructed. In coastal areas, the opposite effect was found. This difference was hypothesized to 

be due to the greater cost of NFIP compliance in coastal regions. The study’s findings do not provide 

enough information to estimate the effects of induced development, but they do show that risk 

mitigation efforts can meaningfully impact migration patterns. 

Longenecker (2019) estimated the levee effect as follows: using parcel-level data, including year of 

construction, changes in parcel value along several levee-protected riverine areas in protected and 

unprotected areas were modeled. Estimates for the value of assets at risk were made, and then an 

exponential model predicting the value of assets at risk as a function of the distance from the levee 

was fit to the data. However, the calculation of asset values and the risk assessment is not described, 

complicating assessment of the applicability of the results beyond the study itself. The paper finds no 

change in risk over time compared to what is seen in unprotected communities. Several studies 

suggest a plausible relationship between levels of vulnerability/protection and utility, but do not 

assess migration decisions. For example, Fell and Kousky (2015) find that levees increase property 

values. Fan and Davlasheridze (2015) suggest that individuals highly value perceived reduced flood 

risk.  

Other research is inconclusive, and many studies addressing the issue examine the effect in 

developing countries or in the context of international migration. Chen et al. (2017) do not find a 

significant relationship between individual inundation events and migration patterns in Bangladesh; 

Maystadt et al. (2016) did not find an effect of riverine flooding events on long-term migration patterns 

in Nepal. Bylander (2016) also fails to find a robust relationship between flooding in Cambodia and 

the migration of residents of affected areas to Thailand. Families displaced by Cyclone Aila in 2009 

reported a preference to return to their previous hometown if doing so had been economically feasible 

(Saha, 2017). A review of papers studying hurricane recovery found only limited impacts of hurricanes 

on long-term migration (Cattaneo et al., 2019). For example, Fussel et al. (2017) suggests that 

hurricane damage does not suppress long-term population growth, except for roughly 2% of counties 

with growing high-density populations. 

However, Koubi et al. (2016) finds that the likelihood of migration increases with self-reported 

perception of risk of acute events such as flooding. Extreme precipitation in Mexico is correlated with 

increased international migration, but only in rural areas (Nawrotzki et al., 2015). Fussel (2015) finds 

that vulnerable residents of hurricane-impacted cities are the slowest and least likely to return once 
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temporarily displaced, suggesting that effects may vary across classes or other demographic 

characteristics. Curtis et al. (2015) find that migration back to areas affected by extreme storm surge 

flooding is much stronger than would be estimated under an assumption of stationary migration rates. 

Migration patterns became more urbanized and concentrated after a flood event. However, Curtis et 

al. (2019) find that this recovery in non-metropolitan areas is smaller and shorter-lived than in 

metropolitan areas, suggesting differential rates of recovery at different levels of urbanicity. 

TRANSLATING POPULATION GROWTH TO ASSETS 

Regardless of the modeled drivers of growth, the team also needed to consider details such as the 

location where new assets are assigned and their structural attributes (e.g., foundation heights, 

square footage). In CLARA v3.0, this uncertainty is incorporated directly into the approach to modeling 

parametric uncertainty. Consistent with prior analyses, it is assumed that the inventory of structural 

assets scales with population change as calculated at the census block group level. 

However, rather than explicitly incorporating land use change, marginal development, and 

densification into the economic model, the team calculates the empirical distribution of structural 

attributes such as structure type, foundation height, square footage, and ground elevation. In future 

time periods, the damage model utilizes Monte Carlo simulation to assign these attributes in 

accordance with their distribution within each block group. Assets within each block group are 

distributed proportionally across that block group’s grid cells, and the ground elevation of each asset 

is assigned by sampling from the distribution of topographic elevations within each grid cell. 

CONCLUSION 

In CLARA v3.0, population change does not account for migration induced by sea level rise or by high-

frequency flooding, tidal events, or other risk-related factors. Populations and assets inhabiting areas 

projected by the ICM to convert to open water are removed from the inventories, implicitly assuming 

that they relocate outside of the study region. For future master plan iterations, a more sophisticated 

implementation of this approach may allow the team to more realistically model the migration of 

populations whose communities are threatened by sea level rise. 

The approach adopted for the 2023 Coastal Master Plan allows more continuous variation in growth 

compared to the assumptions used in the 2017 Coastal Master plan, stratified by census 

demographics. It uses an overall growth rate consistent with historical data at the census block level, 

but permits future work to normalize region-wide population estimates based on commonly used 

population forecasts.  
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6.0 ADDITIONAL MODEL UPDATES 

6.1 UPDATED OR ADDITIONAL RISK METRICS 

The 2017 Coastal Master Plan used the change in expected annual damage (EAD), estimated for each 

CLARA grid point and calculated under current conditions and three future time periods (Year 10, 25, 

and 50), as the principal risk reduction metric for estimating project cost-effectiveness and 

communicating flood risk. Other metrics were also reported, such as damage recurrence at different 

return periods (e.g., 100-year, 500-year), but EAD reduction at Year 50 remained the key risk 

reduction decision metric when combined with estimated project cost.  

There are several known shortcomings with this approach. First, the estimates by grid point relied on 

simplifying assumptions about assets within each polygon that could be improved with higher 

resolution data (see Section 3). Second, these results only reflect snapshots in time, and do not 

provide information about the timing or accrual of benefits from risk reduction investments in 

intervening years over the course of the 50-year time period. Relatedly, because there is no stream of 

benefits over time, these estimates are not supportive of formal economic benefit-cost analysis, which 

may be of value for either decision-making or reporting. Finally, there are known problems with relying 

solely on EAD or other estimates of monetized damage to assets as a measure of risk or risk 

reduction. Because higher value assets will tend to lead to greater EAD from flooding, other things 

equal, this metric can potentially bias risk reduction investments towards communities with higher 

wealth or income profiles. Studies have suggested a potential conflict between cost-effectiveness and 

equity in relation to flood risk management (Lyons-Harrison, 2017; Kind, Botzen, & Aerts, 2016), and 

several case studies have observed such conflict in water quality management (Khadam & 

Kalaurachchi, 2006; Van Der Veeren & Lorenz, 2002). 

For the 2023 Coastal Master Plan, the team explored the potential to improve the estimation of EAD in 

different spatial areas or over time and considered additional or revised risk metrics that could help to 

address equity or environmental justice questions. This section describes methodological 

improvements for EAD implemented in the newest version of CLARA, as well as additional metrics to 

consider household flood exposure to better support equity analysis. 

SPATIAL AGGREGATION 

As noted in Section 2, CLARA has used grid cell polygons as the spatial unit of analysis when 

estimating risk. In previous planning cycles, the model has assumed uniform flood depth exceedance 

curves and asset characteristics for all economic assets located within the same grid cell polygon; 
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structural feature values are based on averages derived from census and other data products. Moving 

towards a structure-level model enables much greater flexibility in defining metrics for reporting, as 

damage metrics can be aggregated, weighted, or transformed in post-processing. However, due to the 

possibility of incomplete data on some structure-level features, the team will still require simplifying 

assumptions such as using average or imputed values where information is missing. Consequently, 

while the team believes a structure-level model will be a useful step forward, the team still plans to (i) 

spatially aggregate metrics to larger units of analysis and (ii) avoiding any communication of structure-

level model outputs. 

TEMPORAL AGGREGATION 

The 2017 Coastal Master Plan experimental design utilized four time periods for each environmental 

scenario, representing current conditions and future Years 10, 25, and 50. Cost-effectiveness of risk 

reduction projects was calculated as the reduction in EAD in Year 50 relative to a Future Without 

Action. Subsequent to the 2017 Coastal Master Plan, the team developed an interpolation framework 

for converting snapshots of risk over time to a present value over the master plan’s 50-year time 

horizon. As described in Fischbach, Johnson, and Groves (2019): 

To better estimate how risk changes over time, we constructed flood depth exceedance 

curves for every year from 2015 to 2065 by linearly interpolating the depth exceedances 

at each return period between the time periods explicitly modeled. We then ran the 

damage model on an annual basis to produce a time series of how EAD changes in 

response to changing flood depth distributions and changes to the value of exposed 

assets as the coastal population changes (also modeled using interpolation between 

time periods). 

Interpolating flood depth exceedances, rather than EAD or other damage metrics, allows the team to 

capture nonlinearities in the damage relationship to inundation depth. However, the best method of 

interpolation is up for debate. The paper cited above used linear interpolation on flood depth 

exceedances. However, the factors driving changes in risk are assumed to be a mixture of linear and 

nonlinear functions of time. Land subsidence and changes to hurricane frequency/intensity are 

assumed to change at a constant rate, but sea level rise projections are nonlinear, accelerating over 

the planning period. The probability of system failure is modeled as a nonlinear sigmoid curve.  

Once values have been interpolated, performance over time can be summarized in various ways. 

Options include integrating over time (e.g., present value of EAD reduction), averaging or calculating 

another summary statistic (e.g., expected number of inundating flood events over 50 years), or simply 

providing visualization of how the metrics change over time (i.e., not aggregating). CLARA will produce 

time series results as inputs for use by the Planning Tool. 
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NEW DAMAGE METRICS 

With the structure-level model, the team will be able to generate more confident estimates of the 

number of homes that face expected damage, or damage by return period, in excess of a given value. 

This allows for estimates of flood impacts that are less sensitive to the value of the asset itself or 

biased towards wealthier areas. The team plans to set a threshold for what constitutes “meaningful” 

damage, and return the number of structures which are meaningfully damaged at a given exceedance 

probability. This threshold could be expressed as an absolute magnitude (e.g., losses from all damage 

categories exceeding $1,000) or in proportion to replacement cost (e.g., structural damage exceeding 

20% of replacement cost). Alternatively, such a metric could be based on exposure rather than 

consequences by counting the number of structures inundated to a depth of n feet above first-floor 

elevation. The team recommends having at least one such metric that is less sensitive to structure 

values; it is anticipated that many metrics like these would be easy to produce, so the final selection 

would primarily be based on CPRA’s perspective on salience and effectiveness for communication. 

6.2 IMPROVEMENTS MADE SINCE THE 2017 COASTAL MASTER 

PLAN PROCESS 

In this section, the report briefly outlines some additional improvements to the CLARA modeling 

framework that have been developed subsequent to the 2017 Coastal Master Plan, which have not 

been covered in more detail in previous sections. 

MODELING LEVEE/FLOODWALL FRAGILITY 

The 2017 implementation of CLARA made the simplifying assumption that if a levee is breached, the 

breach will occur at the time of peak surge elevation. A potential breach was modeled as a Bernoulli 

random variable. The probability of failure p for a given reach segment was calculated as a function of 

the peak overtopping rate, the length of the segment, and an assumed scenario-dependent fragility 

curve. Any such breaches were assumed to be full-depth and full-width along a reach, and after the 

time of peak surge, overtopping was calculated assuming that the structural protection has effectively 

had its crest height reduced to its base. For more details on the fragility approach, see Fischbach et al. 

(2017). 

For the 2023 Coastal Master Plan, the team implemented a new approach for modeling levee fragility 

adapted from Johnson et al. (in preparation), which permits breaches to occur at times other than the 

time of peak surge. In this new approach, a uniform random variate (from 0 to 1) is drawn for each 

levee segment. The probability of a breach is calculated at every time-step in the overtopping time 

series rather than only at the time of peak overtopping. A breach is assumed to occur if and when the 
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probability of a breach exceeds the uniform variate. Other than timing, the team continues to make 

the same assumptions about the consequences of a breach. The assumptions made regarding the 

timing of a breach in the proposed approach present an improvement more consistent with physical 

reality, although it is noted that this approach does not incorporate any knowledge of time-

dependencies related to geotechnical integrity under long-duration storm events. 

The 2017 version of CLARA used fragility curves that are consistent with assumptions about system 

fragility made by USACE in the IPET and Morganza to the Gulf studies. Because results across some 

fragility scenarios were very similar in the 2017 analysis and in order to reduce the size of the 

experimental design, the 2023 version will focus on the No Fragility and IPET Low fragility scenario 

from the 2017 Coastal Master Plan (Fischbach et al., 2017) as a subset of these scenarios. The No 

Fragility case provides an upper bound on risk reduction from structural protection projects that do not 

fail under load, while the IPET Low Fragility scenario can be interpreted as a representative case 

allowing for the possibility of structural failure. 

RAINFALL MODEL UPDATE 

The 2017 Coastal Master Plan implementation of CLARA utilized the IPET model of rainfall associated 

with synthetic tropical storm events. Gabriele Villarini has developed a spatio-temporal Gaussian 

process model of bias in the IPET rainfall model, permitting the creation of bias-adjusted rainfall fields 

(Villarini et al., under review). Work is under way to produce bias-adjusted rainfall fields for the 

selected storm events. Depending on the timing when these estimates become available, the team 

will aggregate these rainfall fields to the BHU level for use in the flood depth calculations, displacing 

the use of the IPET model. If they are not provided in time for use in runs for the plan, the team will 

use the same rainfall approach as in previous versions of the master plan. 

CROSS-LANDSCAPE INTERPOLATION 

Previous versions of CLARA used a statistical response surface trained on ADCIRC+SWAN data to 

predict peak surge and wave behavior in additional storms not run through ADCIRC+SWAN. The 

response surface used both storm parameters (e.g., central pressure deficit and radius of maximum 

wind speed at landfall) and geospatial information (e.g., distance and azimuthal angle between 

landfall and the point of interest) (Fischbach et al., 2017), but a separate response surface was 

trained for each landscape scenario. This has the potential to create a computational bottleneck, as 

the number of ADCIRC+SWAN simulations required scales directly with the desired number of 

scenarios and time periods. 

CLARA’s linear response surface demonstrates that linear interpolation of flood depth exceedances in 

unprotected areas between modeled years is an appropriate modeling approach. However, the 



2023 COASTAL MASTER PLAN. Risk Assessment 71 

 

sigmoidal behavior of overtopping/fragility dynamics and nonlinearity of damage curves means that 

interior flood depth exceedances and economic risk metrics should not be interpolated linearly over 

time. Calculating the present value of EAD reduction over time with fidelity requires flood depth 

exceedances to be estimated in a greater number of time periods than are planned for storm surge 

modeling. In unprotected areas, the team plans to temporally interpolate surge and wave behavior 

storm by storm over time. For modeling risk in protected areas, this will also be done around the 

protection system boundary, which can then be fed into overtopping calculations. The team will then 

run the model at a finer time interval (i.e., every five years) to further improve the accuracy of risk 

estimates in enclosed protection systems over the method used by Fischbach et al. (2019). 
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7.0 CONCLUSION 

This report described a series of advancements applied to the CLARA model to support development 

of the 2023 Coastal Master Plan. Improvements leverage new methodologies for flood risk estimation, 

new data sets providing greater fidelity for economic assets, updated meteorology, and assorted 

changes building on lessons learned from previous planning efforts. The report also highlights some of 

the analysis that informed CLARA v3.0 design choices. 

Key changes included: 

 Updates to the CLARA model grid, unit of analysis, and mapping capabilities 

 Creation of a novel data set comprising the location and risk-relevant attributes for 

every structure in the coastal zone 

 Implementation of advancements to joint probability modeling methodologies 

developed by USACE 

 Selection of a new reduced storm set for use in flood risk estimation 

 Development of a new population growth scenario 

 Incorporation of uncertainty in population change and structural attributes into the 

model’s parametric uncertainty framework 

 Addition of risk metrics that summarize expected direct economic losses over time 

 More realistic fragility modeling that accounts for the possibility of levee failures to 

occur during surge runup, rather than only at the time of peak surge. 

Some aspects of model improvements are still ongoing and expected to continue through initial 

testing of the 2023 Coastal Master Plan’s existing conditions landscape. The team plans to revise and 

update this report to reflect the final changes used in model production. 
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